英文名称:An Ancient History of Western Mathematics
教学目的:
科学技术史专业研究生通过入学选拔的要求,已经具备西方科学通史的一般知识。研究生学位要求对本专业知识有更加深入和具体的了解,其中应予深入和具体的方向之一即西方数学史。除了知识的扩展和深入,研究生还应习得一定的研究能力。本课程拟采取强调文献阅读与课堂讨论的教学方法来达到上述目标。
与同类课程比较:
就清华大学校内而言,该课程尚未有开设。与国内在建世界一流大学或科学技术史一流专业的兄弟院校相比,本课程的教学内容有了很大的拓展,所采用的材料由一般数学通史拓展至原始材料和前沿研究论文和专论,在方法上,由教师叙述为主变为讲述与研讨的结合。与世界一流大学相比,本课程重视西方古代数学史学术前沿方法与观点的介绍。
教材:
《数学史通论》 Victor J. Katz 中译本2004
参考书:
《数学史概论》李文林 2011
《数学史》斯科特 中译本 2010
《古今数学思想》克莱因 中译本2014
《东方数学选粹》Victor J. Katz 中译本2017
A History of Greek Mathematics Heath, Dover, 1981
History of Mathematical Proof Chemla, Cambridge, 2012
以及其他一些原始材料、断代史、专论及前沿论文
适用院系或专业:科学技术史专业
预备知识:西方古代科学通史的一般知识
中文内容简介:
本课程“西方古代数学史”中的“古代”与“西方”一词,比通常所指都有所扩展。“古代”包含了通常所不含的中世纪。而“西方”一词的扩展则更大,与欧洲学术传统(及后来被世界其他地区继承)中以“西方-东方”对立划分欧亚大陆的一般定义并不相同。在上述传统中,大体上欧洲以东皆称“东方”(又分为“近东”,“中东”,“远东”等等)。本课程所指“西方”,以东亚为中心,其西均为“西方”。这一用法并非出于民族主义的情绪,而是为了服务于课程目的的需要。首先是为了知识完整性的考虑:由于国内的数学史研究长期以来局限于汉语文化圈的数学史,以及目前科技史研究生主要也是来自这一地区,导致国内中国传统以外的数学史材料、知识和观点都较为陈旧,若只讲传统意义上的“西方”数学史,在为学生提供数学史知识方面则缺乏完整性。其次是为了研究生教学特点的考虑:研究生教学除了提供知识,还要引领学生体会学术研究的理论和方法,而数学史的前沿观点正在由欧洲中心说的叙事转向“世界数学史”路径。因此本课的“西方古代”主要涉及埃及、美索不达米亚、印度、希腊这四个古代文明以及中世纪的伊斯兰与基督教文明。本课程学习和讨论这些文明和时期数学的内容、方法、特点以及它们相互之间的关系。
英文内容简介:
Both the terms "ancient" and "western" in the title of the present course cover more than their usual meanings. The term "ancient" includes the middle ages. The use of the term "western" here differs from its definition in the dichotomy "west-east" in European academic tradition, in which all the area to the east of the Europe are called "east" (thus "near-east", "middle-east", "far-east" etc.)In this course, we take all the area to the west of the East Asia as "western"。This use is by no means stimulated by any nationalist emotions, but for the purpose of the aim of the course. Firstly, the integrality of knowledge is considered. Because the researches in the history of mathematics in China has been focused on the history recorded by Chinese language, and given that most of our students are also the same origin, if we only add to this base the European mathematics, the contents as THE HISTORY of mathematics are far from completed. Secondly, the purpose of graduate formation is taken into account. In addition to provide the graduate students with more knowledge of relative fields, with the graduate course we must train the students in respect of academic research approaches, while the most prominent phenomenon in current researches of the history of mathematics is the turning from the history of European mathematics to a world history of mathematics. Therefore, in this course, the "western" "ancient" civilizations concerned are Egyptian, Mesopotamian, Indian, Greek and Medieval Islamic and European. The students will study the contents, methods, and characteristics of the mathematics in these civilizations, as well as the relationships between them.
