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Prolegomenon I: The Zilsel thesis

Whoever began their work on the history of science with Joseph Needham’s
writings (I did) will know about the Zilsel thesis – if not in detail then by name.

But let us start with the details.
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Edgar Zilsel was an Austrian sociologist belonging to the circle of logical
empiricists.

Together with Otto Neurath and Jørgen Jørgensen he was one of those who
believed in the possibility of achieving reliable knowledge about the external
world

– together with Neurath and Jørgensen also closer to Marxism than most
members of the movement).

– When Rudolf Carnap gave up genuine empiricism in 1932 with his
introduction of the concept of “protocol sentences” (whose relation to
some real world was considered outside the philosopher’s field), Zilsel
was the first to attack him.

In Zilsel’s case, with his background in sociology, the method supposed to lead to
the goal was sociological and historical comparison, not Neurath’s “physicalism”.
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Zilsel was marginal in the Vienna environment.

He remained marginal after his post-Anschluss emigration to the U.S., where he
was associated to the International Institute of Social Research, the emigrated
version of the Frankfurt Institut für Sozialforschung.

After his suicide in 1944, he was at first almost forgotten (the history of science
constituting a partial exception) – in particular he disappeared from historical
accounts of logical empiricism.

That situation only started to change after 2000, when logical empiricism itself
was no longer neither an inspiration nor an object of philophical attack.
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During his stay in the U.S., Zilsel worked (until 1941 on a Rockefeller grant, then
in the scarce time left over from earning a living) on a project on the social
origins of Modern science.

The articles communicating partial and preliminary results from this project have
secured him some fame among historians of science – not least thanks to Joseph
Needham.
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The first to appear in print was “The Sociological Roots of Science”. Its abstract
runs as follows:

In the period from 1300 to 1600 three strata of intellectual activity must be

distinguished: university scholars, humanists, and artisans. Both university scholars

and humanists were rationally trained.

Their methods, however, were determined by their professional conditions and

differed substantially from the methods of science.

Both professors and humanistic literati distinguished liberal from mechanical

arts and despised manual labor, experimentation, and dissection.

Craftsmen were the pioneers of causal thinking in this period. Certain groups

of superior manual laborers (artist-engineers, surgeons, the makers of nautical

and musical instruments, surveyors, navigators, gunners) experimented,

dissected, and used quantitative methods.
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The measuring instruments of the navigators, surveyors, and gunners were the

forerunners of the later physical instruments. The craftsmen, however, lacked

methodical intellectual training.

Thus the two components of the scientific method were separated by a social

barrier: logical training was reserved for upper-class scholars; experimentation,

causal interest, and quantitative method were left to more or less plebeian

artisans.

Science was born when, with the progress of technology, the experimental

method eventually overcame the social prejudice against manual labor and

was adopted by rationally trained scholars.
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This was accomplished about 1600 (Gilbert, Galileo, Bacon). At the same

time the scholastic method of disputation and the humanistic ideal of

individual glory were superseded by the ideals of control of nature and

advancement of learning through scientific co-operation.

In a somewhat different way, sociologically, modern astronomy developed.

The whole process was imbedded in the advance of early capitalistic society,

which weakened collective-mindedness, magical thinking, and belief in

authority and which furthered worldly, causal, rational, and quantitative

thinking.

Summing up the summary, neither the university tradition nor Renaissance
Humanism nor technicians created the scientific revolution on its own – what was
decisive was the interaction between and the mutual fecundation of the three
groups.
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Zilsel’s ideas – together with Boris Hessen’s and Robert Merton’s work on 17th-
century England – have inspired other workers to agreement or debate.

My intention here is to see how far the idea can be applied to a parallel field
which neither Zilsel nor the discussions after his time have taken up:

the emergence of “Modern algebra” (that of the outgoing 16th and earlier 17th
century, to be distinguished from the Moderne Algebra created by Emmy Noether
and Emil Artin and made famous by Bartel L. van der Waerden).
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Prolegomenon II: Internalism versus externalism

Also when I started work on the history of science, a hot debate regarded
“externalism” versus “internalism”. It was inspired in part by readings of Zilsel,
but more strongly by readings of Hessen and Merton.

Terms have changed since then, but hardly the substance; if anything, pseudo-
philosophical jargon has muddled up the issue.

I shall therefore stick to the old words.
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An “internal” history of science is a history of scientific doctrines and results
(good or bad results etc., that is not at issue);

an “external” history is a history of scientific institutions, of the uses of science,
and of the sociocultural setting for scientific activity (etc.) – on the whole, the
conditions for scientific practice. Both are valid enterprises.
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“Internalist” and “externalist” historiography, on the other hand, are claims about
the validity of explanatory models.

“Internalist” historiography claims that what scientists do (and formerly did)
should be explained as a continuation of what science has or had achieved so far,

or as a response to new problems that have or had come to the fore because of
these achievements;

“externalist” historiography claims that scientific practice is a consequence of its
institutional or sociocultural settings or a response to social needs (etc.).

12



The debate is trivially absurd, and always was. (As I claimed that in the late
1970s, colleagues saw this claim as somewhat scandalous).

Scientists; indeed, can only respond as scientists to social needs because they
build on existing scientific results and techniques, so “externalism” presupposes
“internalism”;

but whether some people engage themselves in scientific activity depends crucially
upon the existence of institutions that allow them to learn about this possibility
and about what science has done so far,
– and no less crucially on the existence of a general sociocultural climate

which induces some people to find it a worthwhile choice, and of economic
structures which allow them to dedicate much of their time to it.

Already at this basic level, “internalism” thus also presupposes “externalism”.
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This observation does not exclude the possibility to take either science as it exists
at a particular moment for granted and discuss how scientists react to “external”
influences on these given conditions,

or, reciprocally, to presuppose the institutional and sociocultural framework and
look at how they react to the problems created by a new scientific insight.

Both questions are fully legitimate, and it is rarely possible to discuss more than a
few aspects of a complex network of influences at a time.
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One thing, however, is a principle expressed in such general terms; another thing
the actual implementation.

Here, I shall therefore apply the principle to François Viète’s and René Descartes’
creation of two variants of a new algebra around 1600 – that is, to my oblique test
of the Zilsel thesis.

I shall trace the process from the beginnings of abbacus algebra.

This algebra was created as a superstructure on the teaching in the abbacus school
– as I said in my third lecture, a north- to mid-Italian school for artisans’

and merchants’ sons, where they were taught basic commercial arithmetic
for 1½ to 2 years around the age of 11 or 12.
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Algebra was not taught here; it served the masters for display of ability in
competitions for municipal appointments and for students. Some also took pride or
pleasure in this ability.

It was inspired by Arabic algebra, but was not taken directly from books we
know – neither al-Khwārizmı̄’s nor Abū Kāmil’s algebras, nor from any of al-
Karajı̄’s works.

Even surviving works from 12th–13th century Maghreb can be left out of the
picture.

It seems to have been borrowed from a now lost vernacular algebra tradition
thriving somewhere in the Ibero-Provençal area, and going back (via al-Andalus)
to a “diluted al-Karajı̄”.
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Many features distinguish the “new algebra” from these beginnings –
irrespectively of whether we take al-Khwārizmı̄ or early abbacus algebra to
represent these.

Not least:

The use of symbols – that is, glyphs (letters or otherwise) that are operated upon
directly and do not serve as abbreviations for words serving within the syntax of
normal language.

At first, such symbols were used fairly regularly in abbacus algebra for root-
taking ( ), + (for instance, p) and – (for instance, m).
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At first the unknown (the cosa, “thing”) and its second power (the censo) were
represented by words – neither by glyphs meant to be read as words serving
within normal syntax nor a fortiori by symbols.

Already before the abbacus adoption, higher powers had also come in occasional
use.

Powers beyond the cube were composed by multiplication – the “square of the
cube” or “cube of the square” (always known to be the same) were thus meant to
be the fifth, not the sixth power.

Some algebra writers would do the same with roots, where “multiplication” is
even more glaringly absurd.

The cube root of 512 is 8, and the cube root of the cube root of 512 thus 2, the
9th, not the 6th root of 512.
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Accordingly, the multiplicative composition of roots disappeared rather soon,
while the multiplicative composition of powers gave way only slowly and
unsystematically to composition by embedding:

That is, to an understanding of (for instance) “cube of the square” in
agreement with our (x2)3 = x6

At the end of the 15th century, however, embedding had taken over completely.
That created the need for new terms for the 5th, 7th and higher prime powers.
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Already around 1335, some abbacus writers used abbreviations or other glyphs for
the cosa and the censo – most only as abbreviations, but some used them as
genuine symbols within specific calculations.

One such type was the multiplication of polynomials within schemes emulating
the one used for multiplication of Hindu-Arabic numbers, as here:
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Another was the “formal fraction”, that is, a division of a polynomial by another
polynomial written as a fraction and dealt with in agreement with the arithmetic
of fractions.

Such fractions, however, did not necessarily make use of abbreviations, they
might also write in full words.

100 100
per una cosa per una cosa e piu 5

This leads to an important observation: Symbolic syntax has to be understood as
separate from symbolic lexicon.

The link between the two is opportunistic: complex formulas are not easily written
without the symbolic lexicon, and they easily become opaque.
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Neither glyphs serving as mere abbreviations nor glyphs serving as symbols were
used systematically even in the late Italian 15th century.

Moreover, there was no agreement about what these glyphs should be. As Luca
Pacioli observed in 1494, as his reason to describe several systems,

tante terre, tante usanze “as many regions, so many usages”, and tot capita: tot

sensus, “as many heads, so many opinions”.
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That was to change when algebra matured in early 16th-century German lands as
Rechenmeister algebra.

Here, a single system was established (Heinrich Schreyber tried a notation of his
own using simply the exponents in 1521, but nobody followed him).
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It encompassed higher powers, and it was used systematically by Christoph
Rudolff, Michael Stifel, Johann Scheubel and others.

φ dragma or numerus (degree 0)
radix (degree 1)
zensus (degree 2)
cubus (degree 3)
zensdezens (degree 4)

ß sursolidum (degree 5)
zensicubus (degree 6)

bß bissursolidum (degree 7)
zensdezensdezens (degree 8)
cubus de cubo (degree 9)

Only the new algebras were to start using symbols also for the coefficients of
equations – in the terminology I shall use, to operate with abstract coefficients.
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Several unknowns

Early algebra dealt with a single unknown, the thing and its second power.

Abū Kāmil and al-Karajı̄ (as well as other Arabic algebraic writers) kept the thing

as a principal unknown but sometimes used one or more extra unknowns.
Fibonacci did so too.

Abbacus algebra began doing the same in the outgoing 14th century, Antonio de
Mazzinghi certainly independently, others perhaps inspired by direct or indirect
Arabic contacts (not by Fibonacci, who is different).

Antonio did so in second-degree algebra, the others only in linear problems.
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In Antonio’s Fioretti (ca 1385?) we can follow over several steps how he creates
the technique and brings it to perfection.

The first approach is in problem #9 about two numbers (A and B), fulfilling the
conditions that

AB = 8 , A2+B2 = 27 .

At first Antonio solves the problem by means of Elements II.4.

26



Next he offers an alternative:

we can also make it by the equations of algebra; and that is that we posit that
the first quantity is a thing less the root of some quantity, and the other is a
thing plus the root of some quantity.

♠Antonio is quite aware that the two unspecified “quantities” are identical, as can
be seen from his ensuing calculations. But because of his failure to make it
explicit, the formulation of these is quite a piece of acrobatics.

What he does can be expressed

a = t+√? , b = t–√?
a2+b2 = 2C+?? ,

and the fact that “??” equals two times “?” stays in his mind.
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In the next problems he gets closer, without yet being quite articulate.

However, after different intervening problem types, #18 unfolds the idea:

Find two numbers which, one multiplied with the other, make as much as the
difference squared, and then, when one is divided by the other and the other
by the one and these are joined together make as much as these numbers
joined together.

Posit the first number to be a quantity less a thing, and posit that the second
be the same quantity plus a thing. Now it is up to us to find what this
quantity may be, which we will do in this way.

We say that one part in the other make as much as to multiply the difference
there is from one part to the other in itself.
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And to multiply the difference there is from one part to the other in itself
makes 4 censi because the difference there is from a quantity plus a thing to a
quantity less a thing is 2 things, and 2 things multiplied in itself make 4 censi.

Now if you multiply a quantity less a thing by a quantity plus a thing they
make the square of this quantity less a censo; so the square of this quantity is
5 censi. [...]

This probably goes beyond what Antonio was able to do by mental implicit use of
a second unknown, or at least beyond what he found it possible to convey to a
reader in this way.

This is the likely reason that he now makes the use of two unknowns explicit, and
also chooses a more stringent language, pointing out that the same quantity is
meant in the two positions.
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Awareness that something new and unfamiliar is presented to the reader is
reflected in the explanation that now “it is up to us to find what this quantity may
be”;

it is never stated that the thing has to be found, neither here nor elsewhere in
problems with a single algebraic unknown – that goes by itself.

The procedure can be translated into familiar symbols as follows:

AB = (A–B)2 , A/B+B/A = A+B

with the algebraic positions

A = q–t , B = q+t .

Then
(A–B)2 = 4C , while AB = q2–C ,

whence
q2 = 5C ,
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that is,
q = .5C

In consequence we have the preliminary result

A = , B = .5C t 5C t

Inserting this in the other condition we get

+ = +
A

B

B

A

√(5C ) t

√(5C ) t

√(5C ) t

√(5C ) t

which, after cross-multiplication, becomes

+ = = = = 3 .
A

B

B

A

(√(5C ) t )2 (√(5C ) t)2

5C C

6C 6C

4C

12C

4C
Therefore, since

A+B = 2q = 2 5C

we have
= = 3 ,2 5C 20 C

whence
20C = 9 .
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Tacitly interchanging “first” and “second” number, Antonio thereby obtains that

B = 11/2+√9/20 , A = 11/2–√9/20 .

This would probably have been very difficult even for a mathematician of
Antonio’s calibre without the explicit use of two unknowns.

32



In a huge manuscript written in 1463, Benedetto da Firenze also develops the use
of several unknowns, in problems of the first degree only but making use of
genuine symbolic writing.

We possess his autograph, so we may be sure that we really follow
his development of the idea.
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His starting point is this intricate variant of a familiar recreational problem:

Four have denari, and walking on a road they found a purse with denari.

The first and the second say to the third, if you give us the purse we shall
have 2 times as much as you.

The second and the third man say to the fourth, if we had the denari of the
purse we should have 3 times as much as you.

The third and the fourth say to the first, if we had the denari of the purse we
should have 4 times as much as you.

The fourth and the first say to the second, if you give us the denari of the
purse we shall have 5 times as much as you. It is asked how much each had,
and how many denari there were in the purse.
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At this point (that can be seen from the

Benedetto, første

organization of the page), Benedetto starts
making symbolic algebraic operations in the
“margin”.

Using already familiar standard abbreviations
for “the first”, “the second”, “the third” and
“the fourth” (which I shall represent by α, β, γ
and δ) and b for the purse (borsa) he first
writes the equations

(juxtaposition means addition,
enlarged distance equality)

γ 1/2α
1/2β

1/2b
δ 1/3β

1/3γ
1/3b

α 1/4γ
1/4δ

1/4b
β 1/5α

1/5δ
1/5b
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and then he starts operating algebraically on these.

Afterwards, but only afterwards, he describes the calculations in words in
whatever space is left over by the “marginal” calculations – confirming by a
number of mistakes that this description copies the (correct) symbolic calculations.

That is, Benedetto undertakes an algebraic symbolic calculation with five
unknowns, apparently without thinking that this is something particular.

The organization of his calculations is improvised and not too clear, but the
calculations themselves are correct.
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The solution to this somewhat later problem is similar but somewhat more
orderly:

Four men have denari and want to buy a horse, and no one has so many
denari that he can buy it. The first says to the second and the third, if you
give me 1/2 of your denari, with mine I shall buy the horse.

The second says to the third and fourth man, [...].It is asked, how many
denari each one had, and what the horse was worth.

Even though there are many ways to solve such cases I shall take the most
convenient, or let us say the least tedious. [...]

At that point, Benedetto starts making marginal symbolic calculations.

As we see, he is aware of using a particular, “less tedious”, method.
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With another “purchase of a horse” problem, that method
gets a name: “by equation”:

Benedetto
p. 323

Four have denari for which they want to buy a horse, and

none of them has so many denari that he can buy it. The

first and the second say to the third man, if you give us

the 1/3 of your denari, we shall buy the horse. [...].

It is asked, how much each one had, and what the horse

was worth. We shall do it by equation.

Now, the technique is ready, it is named, and the
calculations are extremely orderly.

It seems that Benedetto has now started making his
calculations on a separate support, then copying
them into the manuscript.
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Benedetto formulates yet another problem that has to be solved “by equation”, and
leaves a frame for the calculations. But he does not fill it out, nor does he go
through the solution in words.

And this is the end of it.

We have two partial copies of the treatise, but both omit this difficult part.
Benedetto’s idea seems to have been noticed by nobody.
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In Nicolas Chuquet’s Triparty from 1484 and Luca Pacioli’s Summa from 1494
there is another approach to several unknowns.

Both operate with a second unknown, a quantity, but recycle it so as to work
effectively with several unknowns.

None of them appear to think much of the technique. According to Pacioli, this
use of a “second thing” is well known from “ancient practical books” – he does
not say which, and they are unknown to us.

Girolamo Cardano follows Pacioli in his Practica arithmetice, et mensurandi

singularis from 1539, but even he does not see the technique as something
important.
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Quite differently, Christoph Rudolff sees this regula quantitatis, as he calls it, as
“a completion of the coss, indeed in truth a completion without which it would
not be worth much more than a pfifferling” [“a trifle”].

Rudolff shares the name regula quantitatis with Étienne de la Roche, who had
used it 1520; other more striking coincidences suggest that Rudolff was inspired
by this otherwise not very influential book.

In 1544, further unfolded in 1553, Michael Stifel introduced an alphabetic
notation for indefinitely many supplementary unknowns. We shall come back to
that.

41



Internal development under which external conditions?

These developments can be described and more or less “explained” by internal
dynamics, given the institutional settings within which algebra developed.
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Abbacus algebra thrived, as indicated by the name, within the abbacus school
environment.

Abbacus algebra had no practical uses. It was a prestige topic, and therefore also
served in competitions
– either arranged officially by authorities for the recruitment of teachers to

the municipal abbacus schools;
– or, more informally, taking place by means of challenges meant to

impress the fathers of prospective students and show which master had
the best school.

That provided a drive to solve more complicated problems than those traditionally
known – not least problems of the third and fourth degree.
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Already in 1328, a problem collection gives false rules for irreducible cubics,
which (soon supplemented by others) survived in Italy, where they were still
repeated uncritically by Piero della Francesca

(being even repeated in an arithmetic printed in Portugal in 1550).

A modicum of algebraic insight might have exposed the fraud, but that was not to
be expected from the members of city councils or fathers of prospective students
(nor in most cases from competitors).
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However, as we know, such situations engender genuine mathematical interest in
some.

Beyond mathematically competent abbacus masters like Antonio and Benedetto
we may mention Giovanni di Bicci de’ Medici, initiator of the Medici rise to
power in Florence and at the time fully occupied by the expansion of the Medici
bank.

In 1397 he engaged in a discussion about the solvability of certain irreducible
equations.
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None the less, the concentration on the solution of complicated problems did not
push toward development of coherent new insights

– except a negative empirical insight formulated by Pacioli: So far no general
way is found by which to solve three-member equations where the powers
are not “equidistant”.

Striking is the case of Benedetto da Firenze. We have seen how he created a
technique for solving complicated linear problems by means of symbolic algebra
with many unknowns.

When that was done he left things there, not even pointing out to the high-status
dedicatee of his huge treatise that he was offering something going far beyond
what had been done before.
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As we have also seen, the section in question is only found in Benedetto’s
autograph but left out in the other copies we possess of the Trattato.

Benedetto’s innovation remained unknown
(at least until, three ago, I took the trouble to work through the 1012
folio pages).
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10 minutes’ break
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The setting of Rechenmeister algebra was different from that of the abbacus
masters.

Firstly, the Rechenmeister participated in the new print culture. False solutions
would soon have found a competent reader and thus have been unmasked.

Competition, moreover, was not located in challenges judged by more or less
competent or incompetent mathematical laymen.

The medium for the Rechenmeisters’ competition was the book market, for which
reason the hundreds of Rechenbücher published between 1500 and 1650 almost
invariably claim to be totally new

– which is just as invariably fully false or almost false: they are highly repetitive.
And thus, it must be said, with few exceptions rather boring
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Beyond this general setting we should observe that those who brought algebra to
German lands and language were generally trained in the university tradition.

Since some of them are anonymous we cannot claim that they all were, but we
have no counterevidence.
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The core of abbacus algebra, as said, was the solution of intricate problems.

More precisely, given the basis in the abbacus school, problems that looked as if
they dealt with questions pertinent to commerce.

For instance: Barter problems where the price of merchandise was raised over the
cash price not by a fraction but by its square root.

Or, at most, recreational classics like men buying a horse or finding a purse.
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The universitarian tradition was different.

At the early (say, “high-school”) level we find Boethian arithmetic – taught as
some kind of theory (without proofs).

It was trained by means of a board game – not really problems but at least asking
for individual dexterity in calculation.

At the university level, many encountered algorism, the computation with Hindu-
Arabic numerals meant to serve in astronomical calculation.

We must presume that its algorithms were trained, but even that does not allow us
to speak of a problem culture .
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And then, as mathematical high point, there were lectures: for many towards the
end of the Arts course Elements I or the first book of Witelo’s optics.

For a few (we may guess, we have no numbers) more advanced matters.

Lectures taught theory, and the disputations linked to them mostly served
metamathematical discussions. That can be seen from collections of quaestiones,
emulations of disputations.

If a mathematical theorem is well proved, the only thing left to
discuss is indeed the foundations.

There was no opportunity to develop a problem culture.
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Jordanus of Nemore’s De numeris datis illustrates this orientation well: It can be
seen as a stand-in for Arabic algebra emulating Euclid’s Data.

But instead of solving problems (which could have been done if the problems of
the Elements had been taken as model) it is formulated as a collection of
theorems, that is, as theory:

If certain arithmetical combinations of some numbers are given
(for instance, for two numbers their sum and product)

then the numbers themselves are given.
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This was the mathematical upbringing of Johannes Widmann, Andreas Alexander,
Heinrich Schreyber and Christoph Rudolff.

When they taught algebra, they still taught it as a tool for solving problems;

but we may presume that their background was what caused them to use for
instance their notations and organize their material much more systematically than
the Italians had done.
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Stifel, on his part, did not teach algebra in his Arithmetica integra from 1544 – at
least not as the others had done.

He presented the theoretical basis for algebra as just one aspect of “the whole of
arithmetic” – namely in book III. There are illustrating problems, but they are as
secondary as the problems of a modern mathematical textbook teaching theory.

But within this context he offers a decisive innovation which, when at all
mentioned in descriptions of the book, gets no more than a few lines:

namely the alphabetic notation for indefinitely many supplementary unknowns
which I have already referred to.

This was not yet the new algebra, but as we shall see an indispensable first step.
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Stifel keeps the thing (in the German tradition the coß – ) with its powers ( ,
zensus, and , cubus) as primary unknown – henceforth I shall transcribe r (for
res), z (for zensus) and k (for cubus).

But then he adds unknowns 1A, 1B, 1C, etc.

More precisely, these are the first powers of the supplementary unknowns, and
explained initially to stand for 1Ar, 1Br, 1Cr, to be understood as “the A-kind of
r”, “the B-kind of r”, etc.

The second powers are 1Az, standing for “the A-kind of z”, etc.

The product of r and A is written rA, the product of A and B is AB.
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If only we remember that order carries meaning (thus that Ar does not mean the
same as rA) the system is without contradictions though cumbersome and
dangerously close to being misleading.

But only without contradictions until we need to write the product of Az and B –
how do we know that AzB means (A2)B and not A(zB) ?

Stifel could certainly have found a way out, but he had no need to do so in the
present context.
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Almost all of his examples are indeed simple – Stifel’s aim is not to display his
ability to solve problems which others, not possessing his technique, would not be
able to solve.

Instead, Stifel is teaching a technique. Thereby he confirms that the book is
primarily rooted in the university tradition, only expanding its reach so as to
encompass also Elements X and the new field of algebra.
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The first two examples of how to use the notations are borrowed from Rudolff;
the third is a familiar problem type which since centuries had been solved without
algebra:

7 persons owe me money; the sum of the debts less, the first, the
second, the third, etc. are given. The sum of all these given numbers
is 7 times their total less 1 time the total, that is, 6 times the total.
Etc.

Stifel gives the names r, A, ... F to the debts, and then eliminates these unknowns
one by one

– that is, even if Stifel had wanted to use algebra, Rudolff’s method would have
been fully adequate, a single name quantity would have sufficed.
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The next problem is a reducible quartic. It asks for two numbers (say, P and Q)
fulfilling the condition

P2+Q2–(P+Q) = 78 , PQ+(P+Q) = 39 .

Stifel posits the first number to be r and the second to be A, and for convenience
represents their sum by B.

He proceeds in a way that has more to do with
Elements II or with square-grid geometry than with
algebra, using a diagram:

From the second condition he gets that rA = 39–1B.
That allows him to complete the square, etc.
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Two things are to be observed here.

Firstly, that Stifel avoids using his new formalism in non-linear algebra. The
difficulties inherent in his notation therefore do not materialize.

Secondly, that the geometric embedding allows Stifel to take over from geometry
the habit of naming more than a minimal set of unknowns by letters.

In a lettered geometric diagram all occurring entities may indeed be treated on an
equal footing.

That will be important in what I shall have to say later.
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Problems with several unknowns return later in Stifel’s book.

Only two are non-linear. We need not discuss them.

More important for the present discussion is an “improved and much augmented”
edition of Rudolff’s Coss which Stifel prepared in 1553.

Here he replaces Rudolff’s notation for the second unknown by his own, and also
uses it in a number of problems that Rudolff had solved without using a second
unknown.

Of much greater interest is an Anhang, “Appendix”, containing 24 new problems.
12 of them (all of higher degree) make use of the new technique.
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In this context, the mathematical type changes (returning to that of Rudolff):
instead of presenting theory and techniques, Stifel demonstrates his ability to solve
complicated problems.

In order to do that conveniently, however, Stifel has to improve his notation.

His unknowns are now r, A, B, C, etc. The second power of A is now AA, etc.

In 1565, Mattheus Nefe inserts a single example illustrating the technique in a
Rechenbuch that otherwise does not take up algebra – a mathematical analogue of
Stifel’s debt problem, and in so far not remarkable.

But Nefe has seen that there is no reason to distinguish between primary unknown
and secondary unknowns, his unknowns are A, B, C and D.
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Stifel’s technique is also presented (without this simplification) by Clavius in his
Algebra from 1608.

That was Descartes’ schoolbook in algebra, but Descartes seems not to have read
this part of it.

Much more important was probably Valentin Mennher’s Seconde arithmetique

from 1556.

Mennher had come to Antwerpen as an accountant in Fugger service and settled
as a Rechenmeister.

His competence went far beyond what would be expected from a Rechenmeister –
he also published a book on spherical trigonometry (Antwerpen was a sea-faring
city) based on Regiomontanus’s De triangulis but performing the calculations.
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His presentation of several unknowns, on the other hand, does not go beyond
what had been done by Stifel in 1553 – but Mennher’s presentation is very full,
does not copy, and shows he understands to perfection.

Descartes’ friend and mentor Isaac Beeckman possessed a copy.

As late as 1666, moreover, John Collins also recommended Mennher’s book as a
good introduction to algebra.

Mennher was thus at hand and well known in the 17th century, and Stifel’s 1553-
techniques thus available also for those who read French but not German.
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That, however, still did not create the new algebra. For that to happen, another
transformation of mathematical culture was needed.

Evidently not global, but a transformation of a particular strand.

There was, it is true, interest in algebra in 16th-century France.

That is illustrated by the two printings of Johannes Scheubel’s introduction to
algebra in Paris in 1551 and 1552:

– a first edition may be a printer’s misjudgment of the market;
– a second edition so soon proves it was not.
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There was even a kind of tradition to write about algebra in France. We may
mention the names:

Étienne de la Roche (1520) – Jacques Peletier (1554, Latin 1560) – Jean
Borrel/Buteo (1559) – Pierre de la Ramée (1560) – Guillaume Gosselin (1577)

But these writers did not produce anything that can be considered a tradition,
there is neither accumulation nor continuity.

Peletier, eager to list both those algebraic precursors he had read and those he had
only heard about did not know de la Roche in 1554.
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The new algebras did not unfold from them

– Viète, hiding his traces, may have borrowed some inspiration, but hardly
much;

all we know for sure is that he took over the names for powers
from Xylander’s translation of Diophantos;

he is likely, on the other hand, to have read at least Mennher’s
spherical trigonometry, perhaps therefore also his arithmetic;

– Descartes took nothing at all (nor from Viète, by the way).
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The new mathematical culture was a jeu de prestige, a “prestige game” – at least
as agonistic as the culture of the abbacus masters, probably more.

But the competition had a new mathematical basis, which we may call “Humanist
mathematics”.

Early Humanism – from Petrarca until Lorenzo Valla – had not been interested in
mathematics – neither in practical mathematics nor in Greek theory.

They respected Archimedes because of what was said about him by Plutarch and
Cicero, but they knew him only an engineer and as a servant to King and
Country.

His mathematics was unknown. If seen as a mathematicus, then in the sense of
“astrologer”.
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Then, around the mid-15th century, some high-level mathematical practitioners
with Humanist affinities started to change that – most famous Leon Battista
Alberti.

However, what they could know as mathematics was a combination of the
medieval-universitarian and the various “practical” traditions.
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The first Humanist translations of Greek mathematics were published only from
around 1500 onward:

Giorgio Valla, 1501 (posthumous): Euclidean and Archimedean/Eutocian
fragments;

Bartolomeo Zamberti, 1505: problematic translations of Euclid;

Memmo, 1537: translations of Apollonios’s Conics I–IV;

Commandino, 1566: another translation of Apollonios;

Xylander, 1575: Diophantos

Various printings of Archimedean works in Moerbeke’s 13th-century translation
were also published by Luca Gaurico in 1503 and Tartaglia in 1543.
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And then the editions of Greek texts:

The Grynaeus edition of Euclid with Proclos’s commentary in 1533;

Pappos’s Collection in 1538;

Archimedes in 1544.
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These translations and (for those who read Greek) editions made a new and much
more challenging kind of mathematics available.

However, as everybody knows who comes out of a supermarket alive, not
everything that is available has to be put into the basket.

Why would others than those who made the translations or the editions be
interested in what they could find on the shelves?
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Here, a detour over general Humanist culture helps.

Humanism had always been interested in utility.

Not vulgar utility, of course. Humanists despised those crafts which produced
their food and clothing just as much as any German 19th-century humanist scholar
would look down on such Banausen.

They did not need to assert that mathematicus non est collega (“the mathematician
is no colleague”), as their 19th-century successors – that was so obvious to
Renaissance Humanists that the mere statement would have been an obscenity.

When Widmann was made the first specialist mathematics lecturers at the
already Humanistically tainted Leipzig university it was no promotion; it
served to make sure he would never proceed to higher, better paid matters.
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The Humanists meant civic utility: what was useful for the embellishment of
courtly and patrician life, and eventually for military safety.

During the 15th century, that implied that even architecture though a practical art
could be appreciated (as it was already appreciated because it was dealt with in
Latin by Vitruvius);

but also such kin as painting and sculpture became acceptable.
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Around 1400, the Duke of Milan “was often heard to say that he was not
damaged as much by a thousand mounted Florentine warriors as by Coluccio
Salutati’s style”.

Salutati, we should know, was the Humanist Chancellor
of Florence from 1375 to his death in 1406.

After the grand tour d’Italie of the French artillery in the 1490s, it became clear
that Latin letters might (perhaps) outperform mounted warriors, but certainly did
not suffice against modern gunnery.

Around the same time, it turned out that the Portuguese systematic promotion of
navigational mathematics brought unexpected fruit to the Portuguese crown.

So, certain mathematical technologies had to be included in the panoply of what
was civically useful.
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Hans Holbein
the Younger

The Ambassadors

(1533)
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That mathematics, not least its prestigious though hardly useful higher level, had
become a state affair, as once Latin style, is evident from a famous episode from
the history of mathematics (I quote H. L. L. Busard’s biography of Viète):

Viète’s mathematical reputation was already considerable when the

ambassador from the Netherlands remarked to Henry IV that France did not

possess any geometricians capable of solving a problem propounded in 1593

by Adrian van Roomen to all mathematicians and that required the solution of

a forty-fifth-degree equation.

The king thereupon summoned Viète and informed him of the challenge.

Viète saw that the equation was satisfied by the chord of a circle (of unit

radius) that subtends an angle 2π/45 at the center. In a few minutes he gave

the king one solution of the problem written in pencil and, the next day,

twenty-two more.
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The story also illustrates that Viète (and his likes) were known to the court, and
ideologically as well as practically linked to it.
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But which were Viète’s mathematical interests?

They can be identified from his Book 8 of various responses about mathematical

matters from 1593:

– two intermediate proportionals;
– squaring and rectification of the circle and of circular segments, using

Archimedean spirals and the quadratrix;
– construction of a regular heptagon;
– lunules; etc.

In the end Viète deals with spherical trigonometry, a topic that had his special
interest;

this is the only topic that points to broader practices (astronomy and navigation).
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Soon, Pierre de Fermat, Gilles de Roberval – and of course Descartes – were to
widen the horizon, taking up not only further areas of Greek mathematics but
also, for instance, the geometry of kinematics.

Geometry, however, was the core and also made up most of the periphery. More
precisely, geometrical problems.

And, even more precisely, problems rooted in ancient Greek geometry – perhaps
problems known from Pappos, perhaps problems going beyond but of the kind.

No longer, as in Benedetto’s case, abstruse versions of recreational classics about
four men buying a horse or finding a purse.
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Now, Viète as well as Descartes knew algebra as a tool for solving problems.

Viète, as already said, is as taciturn as Euclid when it comes to explanations of
“why” and “from where”.

Descartes, fortunately, is not.
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So, what do we find in Descartes’ Geometrie ? And in previous notes and letters
preparing the project?

In a letter to Isaac Beeckman from 1619, Descartes expresses the ambition to
solve all problems “dealing with any kind of quantities, discrete as well as
continuous”, by means of curves corresponding to higher-degree equations.

By then – and even in 1628 – he was still using Clavius’s notation for a single
unknown (identical with that of Rudolff).

That notation, by the way, is the one of which he would speak in
1637 in Discours de la méthode as “a confused and obscure art that
puts the mind in difficulty instead of a science that cultivates it”.
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In a note from 1628, Beeckman states that Descartes when visiting him had told
him to have invented a general algebra where all the notae cossicae, the “cossic
characters”, are represented by lines (as they were to be in the Geometrie).

These notae are still those of Clavius and Rudolff. That will have been a perfect
occasion for Beeckmann to show Descartes what Mennher had done.

Also possible though less likely is that Descartes discovered Mennher in
Beeckman’s library on his own.

85



Then, in the Geometrie (whose manuscript was finished in 1632), Descartes has
this to say:

When wishing to solve some problem, one should first look at it as already
solved, and give a name to all the lines that seem to be needed in order to
construct it, those that are unknown as well as the others.

Then, without making any difference between these known and unknown lines, one
should run through the difficulty according to the order it shows, the most natural of
all, in which way they depend mutually on each other, until the point where one has
found a way to express one and the same quantity in two ways:

which is called an equation.
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That, of course, is only possible if equations can be formulated in terms of a
plurality of unknowns – “give a name to all the lines that seem to be needed”.

Moreover, as we see, letter names are also given to the known quantities. These
then become coefficients and constant terms.

AND HEREBY WE HAVE THE NEW ALGEBRA!
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That is, Descartes’ “new algebra”.

What about that of Viète?

Viète presents his new algebra independently of the problems to which he intends
to apply it.

But as expressed in the famous closing phrase of the Isagoge from 1591, the aim
is nullum non problema solvere, “to leave no problem unsolved”.

In chapter V of the same treatise, Viète describes the procedure to be used when
an algebraic solution is aimed at:

Magnitudes, those which are known as well as those which are asked
for, should be combined and compared, adding, subtracting,
multiplying and dividing, always observing the law of homogeneity.
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So, Viète’s road toward the abstract coefficients appears to have been very similar
to that of Descartes.

Neither can really be said to have “invented” them.

Both received them as a gift not asked for but coming by necessity out of the
application of algebra with an unlimited number of unknowns to intricate
geometric problems.
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A parallel illustrates the essential role played by the availability of a plurality of
unknowns.

Umar al-Khayyāmı̄, as a mathematician, was certainly at the same level as Viète
and Descartes.

Arabic algebra had operated occasionally with several unknowns for long when al-
Khayyāmı̄ wrote; however, al-Khayyāmı̄s’s algebra was the classical type with a
single unknown.

This algebra he applied when attacking a difficult geometric problem about a
particular partition of a circular arc.
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The arc AB is to be divided at G in such a way that AE : GH = EH : HB. A long
analysis reduces this to the finding of a right-angled triangle ABC, with height
BD, in which AB+BD = AC.

In order to apply his algebra with only one unknown, al-Khayyāmı̄ needs to posit
that AD = 10; that leads him to an equation whose coefficients are numerically
fixed.

Descartes and Viète would have posited AD to be, for instance, b, which would
automatically (though obviously after as much calculation as made by al-
Khayyāmı̄) have produced an equation with abstract coefficients.
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So, the immediate push to invent the new algebra with its many unknowns and
abstract coefficients came from the possibilities that were on offer in already
existing mathematics:

Both the kind of problems that provided the occasion

and the tool of many unknowns.

Both, though belonging to different categories, would traditionally be
characterized as “internal factors”.
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But why was mathematics seen as a worthwhile challenge in the environment to
which Viète and Descartes belonged?

And why would these problems at all be at hand?

Answers to these questions, as we have seen, can only be given if we take into
account what would traditionally be seen as “external factors”.
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To which is to be added that the very metaphor of “factors” is questionable:

It intimates a dubious separability.

In a way, it is thereby a counterpart of the algebraic analysis created by Viète and
Descartes.

But that analysis, within a generation, gave rise to another analysis, Wallis’s study
of infinites, with all its infinite series.

There is no reason to assume that historical analysis should be simpler.

However, like Wallis we have to be satisfied with a hint:

“&c.”
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Back to Zilsel

We might stop here.

This ending fits what I have often said to my students:

“things are always more complex” – namely, more complex than can be expressed
in a finite text. But the exposition has to stop at some point, “footnotes to
footnotes are not allowed by typesetters”.

However, I started with the Zilsel thesis, and should include it when wrapping up.

The thesis spoke about three groups: Renaissance Humanists, university scholars,
and higher artisans.
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In our story, Renaissance Humanists can be taken over directly.

At the global level, university scholars also recur.

However, what is interesting for us are not the natural philosophers of Merton
College and their kin but the readers of Euclid and of other ancient
mathematicians, and those who taught such matters

– in particular taught the appurtenant norms for what constitutes
mathematical truth at the university.

Artisans, finally, are not to be understood as gunners, surgeons and master
builders but as the abbacus masters who taught in the Italian abbacus schools and
(sometimes) developed new knowledge far beyond what they taught.
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The first really fruitful interaction was that between the latter two currents in the
creation of Rechenmeister algebra in the 16th century.

That created a systematic approach to algebra, with consistent though restricted
use of symbols;

and, with Stifel, the important tool of an unrestricted range of unknowns.

Next came the interaction of the Humanist current, forced by new military and
socio-economic conditions, with theoretical, Greek-inspired geometry

– not directly with the broad universitarian mathematical tradition but
presupposing it as its basis.
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The final leap was made when this new “Humanist” mathematics took over the
algebraic tool as shaped by Stifel, Mennher and Clavius, and transformed it in
agreement with its own needs.

So, even though mathematics is next to invisible in Zilsel’s original sketch, his
basic idea applies well to the first step in the creation of the algebraic 17th-
century starting point for the new mathematics.

The next step – infinitesimal analysis – would ask for a different analysis, and
would have to tell a different, probably more intricate story.
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