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Abstract The “unknown heritage” is the name usually given to a problem type in
whose archetype a father leaves to his first son 1 monetary unit and 1

n (n usually being
7 or 10) of what remains, to the second 2 units and 1

n of what remains, and so on. In
the end, all sons get the same, and nothing remains. The earliest known occurrence
is in Fibonacci’s Liber abbaci, which also contains a number of much more sophis-
ticated versions, together with a partial algebraic solution for one of these and rules
for all which do not follow from his algebraic calculation. The next time the problem
turns up is in Planudes’s late thirteenth century Calculus according to the Indians,
Called the Great. After that the simple problem type turns up regularly in Provençal,
Italian and Byzantine sources. It seems never to appear in Arabic or Indian writings,
although two Arabic texts (one from c. 1190) contain more regular problems where
the number of shares is given; they are clearly derived from the type known from
European and Byzantine works, not its source. The sophisticated versions turn up
again in Barthélemy de Romans’ Compendy de la praticque des nombres (c. 1467) and,
apparently inspired from there, in the appendix to Nicolas Chuquet’s Triparty (1484).
Apart from a single trace in Cardano’s Practica arithmetice et mensurandi singularis,
the sophisticated versions never surface again, but the simple version spreads for a
while to German practical arithmetic and, more persistently, to French polite recreatio-
nal mathematics. Close examination of the texts shows that Barthélemy cannot have
drawn his familiarity with the sophisticated rules from Fibonacci. It also suggests
that the simple version is originally either a classical, strictly Greek or Hellenistic, or
a medieval Byzantine invention; and that the sophisticated versions must have been
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614 J. Høyrup

developed before Fibonacci within an environment (located in Byzantium, Provence,
or possibly in Sicily?) of which all direct traces has been lost, but whose mathematical
level must have been quite advanced.
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1 A starting point

In the final collection of mixed problems in the Vatican manuscript of Jacopo da
Firenze’s Tractatus algorismi (Vat. Lat. 4826),1 we find the following (fol. 54v −55r):

Io vo a uno giardino, et giongho a’ppede de una melarancia. Et coglione una. Et
poi coglio el decimo del rimanente. Poi vene un altro dopo me, et coglene doy,
et anchora el decimo de rimanente. Poi vene un altro et coglene 3, et anchora el
decimo de rimanente. Poi vene un altro et coglene 4 et el decimo de rimanente.
Et così venghono molti. Poi quello che vene da sezzo, cioè dercto, coglie tucte
quelle che retrova. Et non ve ne trova né più né meno che abiamo auti li altri. Et
tanto ne colze l’uno quante l’ altro. Et tanti homini quanti erano, tante melarancie
ebbe per uno. Vo’ sapere quanti homini forono, et quante melarancie colseno
per uno, et quante ne colzeno fra tucti quanti. Fa così, tray uno de 10, resta
9, et 9 homini forono, et 9 melarancie colseno per uno. Et colzero in tucto 81
melarancie. Et se la voli provare, fa così.

1 This treatise was written in Montpellier in 1307. In spite of its Latin title and incipit, it is written in Tuscan
(the orthography being somewhat coloured by the Provençal linguistic environment).

Two other manuscripts claim to contain the same treatise, Florence, Ricc. 2236 (undated) and Milan,
Trivulziana, Ms. 90 (c. 1410) (see [Van Egmond 1980: 148, 166]; Van Egmond’s dating of the Florence copy
is misleading, since it merely repeats the date of Jacopo’s original as it appears in the incipit). The Vatican
manuscript is from c. 1450 but a meticulous copy of a meticulous copy, and linguistic and textual as well as
mathematical homogeneity shows the Vatican manuscript to be quite close to the common archetype for all
three manuscripts, whereas the other two descend from an abbreviated adaptation, probably adjusted to the
curriculum of an abbacus school—see [Høyrup 2007: 7; 2007: 12–23]. The final collection of supplementary
problems is absent from the Florence and Milan manuscripts, as are the chapters on algebra.
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The “unknown heritage” 615

El primo ne colze i, restano
80. El decimo è octo, et ày che illo n’ebbe 9, restano
72. El secondo 2, restano 70, el decimo è 7, et ebe ne 9, restano
63. El terzo 3, restano 60, el decimo è 6, et ebe ne 9, restano
54. El quarto 4, restano 50, el decimo è 5, et ebe ne 9, restano
45. El quinto 5, restano 40, el decimo è 4, et ebe ne 9, restano
36. El sexto 6, restano 30, el decimo è 3, et ebe ne 9, restano
27. El sectimo 7, restano 20, el decimo è 2, et ebe ne 9, restano
18. Ell’octavo 8, restano 10, el decimo è 1, et ebe ne 9, restano
9. El nono, cioè quello da sezzo, colze quelle 9, né più né meno, che non

ve n’erano più. Siché vedi che ella è bene facta. Et sta bene. Et così se
fano le simiglianti ragioni.

In literal translation:2

I go to a garden, and come to the foot of an orange. And I pick one of them. And
then I pick the tenth of the remainder. Then comes another after me, and picks
two of them, and again the tenth of the remainder. Then comes another and picks
3 of them, and again the tenth of the remainder Then comes another and picks 4
of them and the tenth of the remainder. And thus come many. Then the one who
comes last, that is, behind, picks all that which he finds left. And finds by this
neither more nor less than we others got. And one picked as much as the other.
And as many men as there were, so many oranges each one got. I want to know
how many men there were, and how many oranges they picked (each) one, and
how many they picked all together. Do thus, detract one from 10, 9 is left, and
there were 9 men, and 9 oranges (each) one picked. And they picked in all 81
oranges. And if you want to verify it, do thus,

the first picked i of them, left
80. The tenth is eight, and you have that this one

got
9, left

72. The second 2, left 70, the tenth is 7, and he got 9, left
63. The third 3, left 60, the tenth is 6, and he got 9, left
54. The fourth 4, left 50, the tenth is 5, and he got 9, left
45. The fifth 5, left 40, the tenth is 4, and he got 9, left
36. The sixth 6, left 30, the tenth is 3, and he got 9, left
27. The seventh 7, left 20, the tenth is 2, and he got 9, left
18. The eighth 8, left 10, the tenth is 1, and he got 9, left
9. The ninth, that is, the last one, picked these 9, neither more nor less, as

there were no more. So that you see that it is well done. And it goes well.
And thus are done the similar computations.

A modern reader encountering a problem of this kind for the first time is usually
stunned. As Euler says about it in his didactical Élémens d′algebre [1774: 489], “this

2 As all translations in the following where no translator is identified, this one is due to the present author.
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Fig. 1

question is of a quite particular nature, and therefore deserves attention”.3 As we see,
the rule works—still in Euler’s words, “it fortunately happens that . . .”—and it does
so for any aliquot part φ = 1

n . Moreover, as we shall see, if only the absolutely defined
contributions form an arithmetical progression and φ is any fraction and not too large
it still works, in the sense that one can still find an initial amount T such that all shares
except the last are equal.

Jacopo probably did not know why his rule functioned—when he knows, he is fond
of giving pedagogical explanations, and here he only presents the complete calculation
as a verification. However, the original inventor must have known why, one does not
stumble on the structure in question by accident.

We cannot know where the idea came from,4 but the arrangement of dots in Fig. 1
(reduced for convenience to φ = 1

6 ) is a possibility:
If we remove 1 small (grey) dot from a square pattern of n ×n dots, what is left can

be grouped as n + 1 strips of n − 1 (black) dots. Removal of one of these strips ( 1
n+1

of what is left) leaves a rectangular system of n × (n − 1) dots. Removing 2 small
(grey) dots from this rectangle leaves n + 1 strips of n − 2 (black) dots, and removing
one of these strips (still 1

n+1 of the remainder) leaves a rectangle n × (n − 2) dots, etc.
In symbols, and for p = 0, 1, 2, . . .,

(n − p) × n = (n − [p + 1]) × n + (p + 1) + (n − [p + 1]).

This is obviously an argument of the same kind as those based on pebble counters
or psephoi used in early classical arithmetic. Contemporary readers accustomed to
working on paper with a square grid may prefer the version in Fig. 2, in which the

3 [Tropfke/Vogel et al. 1980: 582–588] discusses it under the general heading of Schachtelaufgaben, “[nes-
ted] box problems.”, together with problems with the structure (. . . ((x+a1)φ1+a2)φ2+. . .)φn+1+an = R,
admitting however that it is of “a particular kind.” Actually, the mathematical structure is wholly different.
Normal box problems are easily solved by stepwise reverse calculation; in the present case, this is impossible.
4 A direct arithmetical solution is possible, but it could never give rise to the idea. It only works because
the overdetermined problem does possess a solution, and it cannot be generalized to similar but different
situations; moreover, it only finds the sole possible solution without showing that this is indeed a solution:

Since the last visitor of the garden (say, no. N ) leaves nothing, the remainder rN of which he takes
the fraction 1

d must be 0 (if not, (1 − 1
d rN would be left over. But since each visitor picks as many

apples as his number before taking 1
d of the remainder, no. N gets N apples, and so therefore do

all the others. But the second-last visitor (no. N − 1) only picks N − 1 apples before taking the
fraction 1

d of the remainder rN−1. Therefore this fraction must be 1 (he has already picked N − 1,

but should have N ). Further, he leaves N to the last visitor. In consequence rN−1 is N + 1 · N+1
d

is thus 1, whence N must be d − 1.

No source or historian’s discussion I have looked at contains the least hint that its author had seen this.
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Fig. 2

summary to the right shows that the square is divided into the sum of two triangular
numbers, one of which—namely 1 + 2 + · · · + n—consists of the absolutely and the
other—namely (n − 1) + (n − 2) + · · · + 1—of the relatively defined contributions.

2 Leonardo Fibonacci

We shall return to the reasons that this argument may indeed be the one from which
the problem was constructed. Initially, however, we shall have to look at other texts
where problems of this kind turn up—beginning with the earliest specimen, Leonardo
Fibonacci’s Liber abbaci from 1228 [ed. Boncompagni 1857: 279–281]. Fibonacci
first presents his reader with two versions dealing with an unknown heritage distributed
to an unknown number of heirs (this, not fruit-picking, is the habitual dress for the
problem), next with a sequence of structurally similar but more sophisticated pure-
number problems.5

Fibonacci’s first inheritance version shares the structure of Jacopo’s fruit-picking
problem (apart from the fraction being 1

7 and the number of sons thus 6, each receiving 6
bezants). The method is also similar. However, Fibonacci does not give the information
that the amount which each son receives equals the total number of sons, although
his explanation presupposes it (which allows us to conclude that his source for the
problem was even closer to Jacopo):

For the seventh which he gave to every one you retain 7; from which detract 1, 6
remain; and so many were his sons; which 6 multiplied by itself makes 36; and
so many were his bezants.

In the second inheritance problem, each son receives first 1
7 of what is at disposal and

afterwards respectively 1 bezant, 2 bezants, etc.; it is then stated (but no argument
given) that 6 sons get 7 bezants each. The reader must be expected to identify 7 as
the denominator of the fraction, and 6 as 7-1. Finally Fibonacci explains that if the
absolutely defined contributions in the two cases had been instead 3 bezants, 6 bezants,
etc., the number of sons would still have been 6, and the total possession 3×36 bezants
and 3 × 42 bezants, respectively.

Even in the case where the fraction is taken first, a “proof” by means of pebble
counters is possible—see Fig. 3. Here, a number n × (n +1) is split into two triangular
numbers of order n, one of which represents the successive absolutely defined, the
other the relatively defined contributions.

In the ensuing pure-number versions, the fractions and absolute contributions are
more intricate. In order to facilitate the further discussion we shall henceforth designate

5 A full French translation of this part of the Liber abbaci is found in [Spiesser 2003: 711–718]. [Sigler
2002: 399–401] contains an English translation.
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Fig. 3

by (α, ε|φ) the type where absolutely defined contributions α + εi(i = 0, 1, . . .)

are taken first, and a fraction φ of the remainder afterwards; (φ|α, ε) designates the
type where a fraction φ of what is at disposal is taken first and absolutely defined
contributions α + εi(i = 0, 1, . . .) afterwards. In this notation, Fibonacci’s problems
are the following (the inheritance problems are in the left column, the other columns
contain the number problems)

(1, 1| 1
7 ) (1, 1| 2

11 ) (2, 3| 6
31 ) (3, 2| 5

19 )

( 1
7 |1, 1) (4, 4| 2

11 ) ( 6
31 |2, 3) ( 5

19 |3, 2)

(3, 3| 1
7 ) ( 2

11 |1, 1)

( 1
7 |3, 3) ( 2

11 |4, 4)

The problems in the second column (where α = ε) are treated by the same rules as
those of the first column, in the sense that the fraction 2

11 is tacitly dealt with as 1
5 1

2
.

The trick is not explained, however, we only find the prescription (for the first problem)

Divide 11 by 2, which are above 11, 5 1
2 result; from which take away 1, 4 1

2
remain; and so many were the shares; which multiplied together, were 20 1

4 for
the divided number.

For the problem (2, 3| 6
31 ) in the third column, the solution is found by means of the

regula recta, that is, first-degree rhetorical algebra in which the unknown is referred
to as a thing. Fibonacci puts the number to be divided equal to this thing, and finds by
successive computation the first two shares, which he knows to be equal. Resolving
the resulting equation he finds the number to be T = 56 1

4 , the number of shares to be
N = 4 1

2 , and each share � = 12 1
2 . He has thus found the only possible solution, but

his algebraic computation does not show that the subsequent shares will be as required,
that is, that this is indeed a solution. Fibonacci makes no hint at this deficiency, but
he performs a complete calculation step by step (similar to Jacopo’s) which verifies
that the first four shares are 12 1

2 , after which 6 1
4 remains for the final 1

2 -share. Finally
Fibonacci claims to “extract” the following rule from the calculation6 (φ = p

q ):

T = [(ε − α)q + (q − p)α] · (q − p)

p2 , (1a)

6 Obviously Fibonacci uses the specific numbers belonging to the problem when stating the rule, but since
he identifies each number in the rule by pointing to its role in the computation, the symbolic formulae map
his rule precisely and unambiguously.
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N = (ε − α)q + (q − p)α

εp
, (1b)

� = ε(q − p)

p
. (1c)

At closer inspection, the rule turns out not to be extracted. If one follows the algebraic
calculation step by step, it leads to

T = q2(α + ε) − (q − p)qα − (q − p)pα − (α + ε)pq
p2 (2a)

which (by means which were at Fibonacci’s disposal) can be transformed into

T = [q(α + ε) − (p + q)α] · (q − p)

p2 (2a*)

but not in any obvious way into the rule which Fibonacci pretends to extract—if
anything, attempts at further manipulation would rather lead to the reduction

T = [εq − αp] · (q − p)

p2 . (3a)

The implication appears to be that Fibonacci adopted a rule whose fundament he did
not know, and that he pretended it to be a consequence of his own (correct but partial)
solution.7

This inference is corroborated by what happens when Fibonacci treats the problem
(3, 2| 5

19 ). Here, α cannot be subtracted from ε (the outcome is negative), and therefore
Fibonacci (who knew well how to make elementary operations with negative numbers
even though he did not fully accept them) replaces (1) by

T = [(q − p)α − (α − ε)q] · (q − p)

p2 , (4a)

N = (q − p)α − (α − ε)q

εp
, (4b)

� = ε(q − p)

p
. (4c)

7 This case of minor fraud is not without parallel in Fibonacci’s works. In the Pratica geometrie [ed.
Boncompagni 1862: 66], Fibonacci copies from Gherardo da Cremona’s translation of Abū Bakr’s Liber
mensurationum [ed. Busard 1968: 94] a fallacious solution to a rectangle problem l −w=α,�� (l, w)=β

(the words are so close that Fibonacci’s copying is beyond question, here as in several other places).
Afterwards Fibonacci undertakes an explication by means of algebra (which Abū Bakr does not give in
this case even though he does so in others). When arriving to the point where the mistake becomes evident
(but where Fibonacci appears not to know how it has come about nor how to repair it) he concludes the
exposition with the words “et cetera.”
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If Fibonacci himself had reduced the algebraic solution (2a), why would he have
chosen an expression which is neither fully reduced nor valid for all cases? Neither
(2a) nor (2a*) nor (3a) depends on whether α < ε or α > ε.

For the case ( 6
31 |2, 3), Fibonacci just states and applies these rules

T = [(ε − α)q + (q − p)α] · q
p2 , (5a)

N = (ε − α)q + (q − p)α

εp
, (5b)

� = εq

p
, (5c)

and for ( 5
19 |3, 2)

T = [(q − p)α − (α − ε)q] · q
p2 , (6a)

N = (q − p)α − (α − ε)q

εp
, (6b)

� = εq

p
. (6c)

Once again, if (1a) had really resulted from the algebraic solution, why should (5) and
(6) be set forth without being derived from the pertinent algebraic operations (which
are evidently not the same as before)?

We must conclude that not only what we shall henceforth call the “simple versions”
of the problem (Jacopo’s, and those in the first column of the scheme preceding note
6, those where ε = α and where φ is an aliquot part) and their rules were “around” but
also the much more sophisticated versions and rules in columns 2–4 of the scheme.
The question then presents itself, where?

As is well known, most of the “recreational” problems found in the Liber abbaci and
in the various abbacus treatises are widely disseminated, turning up in Indian, Persian
and Arabic problem collections, some also in the Greek Anthology, in Ananias of Shi-
rak’s collection, or in the Carolingian Propositiones ad acuendos iuvenes, some even
in ancient or medieval Chinese treatises. Not so in the present case. [Tropfke/Vogel
et al. 1980: 587 f ] and [Singmaster 2000] only list Byzantine and (Christian) Occi-
dental occurrences, and I have not been able to find parallel examples in sources from
elsewhere, whether published before or after 1980. (Two Arabic “corrected” versions
and their implications are discussed below, around note 21.)

3 Maximos Planudes

Three Byzantine occurrences are known: one in Maximos Planudes’s late thirteenth
century Calculus According to the Indians, Called the Great [ed., trans. Allard 1981:
191–194]; another one in a problem collection from the early fourteenth century [ed.,
trans. Vogel 1968: 102–105]; the last one in Elia Misrachi’s book on arithmetic from
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The “unknown heritage” 621

c. 1500 ([ed., trans. Wertheim 1896: 59 f ]. The cases treated are (1, 1| 1
7 ) (all three)

and (1, 1| 1
10 ) (Elia Misrachi alone). All follow the simple rule we know from Jacopo

and Fibonacci, and in so far they are uninformative. It may be observed, however,
that the fourteenth century problem deals with apples served at lunch, not with a
heritage—Jacopo was thus not quite alone in deviating from the inheritance dress.8

More important is that Planudes—whose testator dies before he has finished his will,
which Planudes takes to explain that the number of heirs is unknown—brings the pro-
blem as an illustration of the following arithmetical observation (almost a theorem):9

When a unit is taken away from any square number, the left-over is measured by
two numbers multiplied by each other, one smaller than the side of the square by
a unit, the other larger than the same side by a unit. As for instance, if from 36
a unit is taken away, 35 is left. This is measured by 5 and 7, since the quintuple
of 7 is 35. If again from 35 I take away the part of the larger number, that is the
seventh, which is then 5 units, and yet 2 units, the left-over, which is then 28,
is measured again by two numbers, one smaller than the said side by two units,
the other larger by a unit, since the quadruple of 7 is 28. If again from the 28 I
take away 3 units and its seventh, which is then 4, the left-over, which is then
21, is measured by the number which is three units less than the side and by the
one which is larger by a unit, since the triple of 7 is 21. And always in this way.

This description does not refer explicitly to counters, but it is noteworthy that the
whole passage fits the above geometric explanation of Jacopo’s problem to the slightest
detail. Without support by either symbolic algebra or a geometric representation it is
also difficult to see that the “theorem” holds for “any square number”, and only the
geometric diagram makes it evident that the procedure will continue in such a way
that exactly nothing remains in the end.10

It is also to be observed that the quasi-theorem and the illustrating problem come
exactly at the point where Planudes goes beyond Indian calculus. In the section which
follows (and which closes the treatise) Planudes treats the problem to “find a figure
equal in perimeter to another figure and a multiple of it in area”—that is, for a given n
to find two rectangles11 �� (a, b) and �� (c, d) such that a + b = c + d, n · ab =
cd (a, b, c and d being tacitly assumed to be integers). Two solutions are given, the
second being stated to be Planudes’s own invention—which implies that the first
solution was not (as indeed we shall see). In this borrowed solution, the following

8 There is no reason to conclude from the common fruit theme that Jacopo and the Byzantine text were
connected, in particular since the general settings (garden/lunch) are different. “Box problems” (see note 3)
about apples were common; though roughly contemporary, the two authors (or their sources) probably made
independent but analogous changes of the usual dress (Jacopo repeatedly uses familiar dresses for problem
types with which they usually do not go together).
9 I try to make a very literal translation, conserving all quasi-logical particles even when they offend the
modern ear; a somewhat less literal French translation accompanies Allard’s edition of the Greek text.
10 A corresponding calculation in symbols based on the corresponding sequence of identities n·(n−p+1) =
p + (n + 1) · (n − p) can of course show it, but with much less ease. A purely verbal argument like that of
Planudes and unsupported by a diagram would hardly give the idea.
11 Actually, χωρίov, here translated “figure”, may have the more specific meaning “rectangular area.”
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622 J. Høyrup

choice is made (n being taken to be 4):

a = n − 1 b = (n3 − 1) − (n − 1)

c = n2 − 1 d = (n3 − 1) − (n2 − 1)

Planudes maintains that this solution is only valid for n = 4, 3 and 5. This is not true,
Planudes must either have calculated badly or relied on bad information. In any case,
he proposes the following alternative of his own (where t is arbitrary):

a = t b = n · (n + 1) · t

c = (n + 1) · t d = n2 · t

As Allard (1981: 235) points out, the second solution coincides with the first if t is
replaced by n − 1. Planudes is not likely to have noticed this, but it may explain how
he guessed his own scheme for the correct solution for n = 3.

The statement of the problem and the first solution are found in almost exactly
the same words in the pseudo-Heronic Geometrica Ch. 24 [ed., trans. Heiberg 1912:
414–417], cf. [Sesiano 1998: 284–286]. The manuscripts (“S” and “V”) from which
this section of the conglomerate is taken are of Byzantine date (the eleventh respecti-
vely fourteenth century), and the use of the late form polnplasi£zw instead of the
classical pollaplasi£zw points to an origin of the text certainly no earlier than the
second century ce, perhaps considerably later. The shape of the problem, however,
is ancient, not medieval: even though it is not found in Diophantos’s Arithmetic, the
stylistic similarity is unmistakeable. The problem is likely to come from that already
existing tradition of “theoretical arithmetic” within which Diophantos tells to have
found his names and abbreviations for powers of the unknown [ed. Tannery 1893:
I, 4].

This does not prove that even Planudes’s “theorem” for the inheritance problem
goes back to Antiquity, but the vicinity and the absence of a claim that he invented it
himself suggests it to have been at least traditional.

In his edition of Elia Misrachi’s text, Wertheim [1896: 60] suggests that the problem
might be inspired by one which is found in a late fourteenth or early fifteenth century
Byzantine manuscript (the cod. Cizensis) containing also Nicomachos’s Introduction
and Philoponos’s scholia to that work (for which reason Wertheim may have thought
it ancient, even if he does not say so). This problem [ed. Hoche 1866: 153 f ] deals
with the legacy of a father with three sons and three daughters, who has disposed of
his legacy as follows:12

– The first son puts into the chest as many coins as it already contains and then takes
250 coins;

– then the second son does the same;
– then the third son does the same;
– then the first daughter puts into the chest as many coins as she finds there, and

takes 125 coins;

12 I am grateful to C. M. Taisbak for assisting me in the interpretation of the text.
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The “unknown heritage” 623

– then the second daughter does the same;
– finally, the third daughter does as much, after which nothing remains.

The text gives the solution (originally, the chest contained 232 + 1
3 + 1

12 + 1
192 gold

coins) but does not explain how it is reached.
Beyond the occurrence solely in a manuscript from c. 1400, other reasons speak

against an early dating of the problem. Firstly, the term for the coin is the medie-
val crÚsinoz (known only from the fourth century ce onward—the ancient form is
crus…on); secondly, according to Taisbak, the syntax is Byzantine and not ancient.
The present problem might therefore well be a secondary derivation from the problem
type we have dealt with so far—a reduction to the normal “box problem” type allowing
a solution by stepwise reverse calculation. In any case, the striking feature of equal
shares is absent from it (indeed, the youngest son and the youngest daughter get the
greatest shares); the basic unknown-heritage problem could therefore at most have
borrowed the dress of an unknown heritage: the mathematical structure must have
been an independent discovery.

4 The mathematics of the full problem

Before we go on with the analysis of further sources, it may be convenient to have
an exhaustive mathematical analysis at hand; it should be kept in mind that this is a
mathematical analysis, and not an interpretation of any source.

Let us assume that a total T is distributed into shares (δ1, δ2, . . . , δn, . . .) in this
way:

– The first share δ1 receives a1, and furthermore a fraction φ of what is left after a1
has been given.

– The second share δ2 receives a2, and furthermore a fraction φ of what is left after
subtraction of the first share and of a2.
. . .

– The n-th share δn receives an , and furthermore a fraction φ of what is left after
subtraction of the preceding shares and of an .
. . .

We want to find the condition imposed on the sequence a1, a2, . . . , an, . . . by the
request that δ1 = δ2 = · · · = δn = · · · = � (admitting that the last share may be
fractional; furthermore, we ask for the value of the total T , of the value � of the single
share, and of the number N of shares.13

13 If we go beyond the mathematics of the thirteenth and fourteenth centuries and admit negative num-
bers, we may instead investigate for instance three sequences S(n), a(n), and U (n), coupled through the
conditions U (n) = S(n) − a(n), S(n + 1) = S(n) − a(n) − φU (n), with n running through the domain
of all integers (negative as well as positive, φ being an arbitrary real number), and ask for the condition
that δ(n) = S(n) − S(n + 1) be constant. Further investigation of the properties of this system might
perhaps present us with some interesting mathematics (though I doubt it), but it would lead us away from
the problem of our texts.

The wider class of coupled progressions does contain interesting objects. For instance, self-references
are removed from the “Fibonacci series” if it is dissolved into three cyclically coupled sequences
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Before the n-th take, Sn is at disposition (S1 = T ). The n-th share is then

δn = an + φ(Sn − an) = φSn + (1 − φ)an .

After it has been removed, the remainder is

Sn+1 = Sn − δn = (1 − φ)Sn − (1 − φ)an = (1 − φ) · (Sn − an),

and the n + 1-th share becomes

δn+1 = φSn+1 + (1 − φ)an+1.

Since we have required that δn = δn+1 = �, which implies that Sn − Sn+1 = �,
we find that

(1 − φ) · (an+1 − an) = φ(Sn − Sn+1) = φ�,

whence also an+1 − an must be constant and equal to ε = φ
1−φ

1 · �. The abso-
lutely defined contributions must therefore constitute an arithmetical progression,
an = α + (n − 1) · ε

For a given set of values for T = S1, φ and α = a1 follows

� = δ1 = α + φ(T − α) = φT + (1 − φ) · α,

ε = a2 − a1 = φ
1−φ

� = φ
1−φ

(φT + [1 − φ]α).

If the resulting � does not exceed 1
2 T , this gives us at least 2 full shares; the sequence

can be constructed stepwise until the remainder becomes less than � (a strict proof of
this asks for complete induction, but it should be possible to dispense with that tedium
here).

However, the texts do not start from given values of T, φ and α but from φ, α and
ε. From this they find T,� and N . We may do as much. From ε = φ

1−φ
· � follows

� = 1−φ
φ

ε. (7c)

But since � = δ1 = φS1 + (1 − φ)a1 = φT + (1 − φ) · α,

φT = (1 − φ) · ( ε
φ

− α),

T = 1−φ
φ

· ( ε
φ

− α), (7a)

footnote 13 continued
S, T , and U , where U (i) = S(i) + T (i), S(i + 1) = T (i) + U (i), T (i + 1) = U (i) + S(i + 1). This
observation, and the fact that the side-diagonal-algorism for a square consists by its very nature of two
coupled progressions S and D, S(i + 1) = S(i) + D(i), D(i + 1) = 2S(i) + D(i), suggests a link to
continued fractions.
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and finally

N = T

�
=

1−φ
φ

( ε
φ

− α)

1−φ
φ

· ε
= 1

φ
− α

ε
= ε − φα

φε
. (7b)

The condition that at least two full shares can be found (that is, N ≥ 2, all parameters
taken to be positive) is then that

φ ≤ 1

2 + α
ε

, (8)

which is clearly fulfilled in all examples we have seen.
In order to compare with Fibonacci’s rules, we put φ = p

q . Thereby the formulae
become

� = q − p

p
ε, (9c)

T = (q − p) · (εq − αp)

p2 , (9a)

N = εq − αp

εp
. (9b)

We may also express φ as 1
d , in agreement with the trick Fibonacci used to treat cases

in the second column of the scheme preceding note 6, for instance (1, 1| 2
11 ). Then the

formulae look much simpler:

� = (d − 1) · ε, (10c)

T = (d − 1) · (dε − α) (10a)

N = d − α
ε
, (10b)

From (10b) we see that if φ is an aliquot part (and d thus integer), N is integer
if and only if ε divides α. For other cases we see from (9b), presupposing that p

q is
reduced to minimal terms and thus that p and q are mutually prime, that

Nε = εq

p
− α.

If α and ε are integer (as they always are in the texts), this can only be fulfilled if p
divides ε, that is, if µ = ε

p is integer. Inserting this we see that

Nµp = µq − α,

whence α = µ · (q − N p).
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For a given value of φ reduced to minimal terms p
q , all types leading to an integer

solution for N are thus (q, p| p
q ) and those types which can be obtained by trivial

means from it by multiplying all the absolutely defined contributions q + i p by the
same constant µ and/or by starting from a different point in the sequence µq + i · (µp)

(taking care that N remains in the requested domain, e.g., N ≥ 2.14 Since no sources
contain a problem with non-integer d leading to an integer value for N , this was
probably not known to the medieval calculators.

All of this concerns the situation where the absolutely defined contributions are
taken first and the fraction of the remainder afterwards. All calculations are similar in
the case where the fraction is taken first. The corresponding formulae become:

� = ε
φ
, (12c)

T = ε − αφ

φ2 , (12a)

N = ε − αφ

εφ
. (12b)

� = εq

p
, (13c)

T = q(εq − αp)

p2 , (13a)

N = εq − αp

εp
. (13b)

� = dε, (14c)

T = d2 ε − dα, (14a)

N = d − α
ε
. (14b)

Since the formulae for N are the same, the condition for the number of shares being
integer and being at least 2 are unchanged.

After this modern reconstruction, one may ask how corresponding calculations
could be made with the tools at hand in late Antiquity or the Middle Ages. Problems
of the types (ε, ε| 1

d ) and ( 1
d |ε, ε) can of course be solved by means of counters for any

integer value of ε, not only for ε = 1, just by taking the value of each counter to be
ε instead of 1; so can problems of the types (nε, ε| 1

d ) and ( 1
d |nε, ε)—the procedures

are exactly the same as in the previous case, just with omission of the first n − 1 steps;
anybody familiar with the operations on the square pattern might discover that.15

14 For φ = 6
31 , (α, ε) may thus be any one of the sets (1,6), (7,6), (13,6) and (19,6) or their multiples

(µ, 6µ) etc.
15 On the other hand, anybody familiar just with the rule for the case (1, 1| 1

d ) might also observe that the

solution to the case (n, 1| 1
d ) is obtained from the former case by omission of the first n − 1 heirs. The

solution for the case (ε, ε| 1
d ) is of course obtained from that for (1, 1| 1

d ) by simple proportionality, no new

proof being needed; the same holds for the relation between the cases (nε, ε| 1
d ) and (n, 1| 1

d ).
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Fig. 4

Even for cases where d is non-integer and/or ε does not divide α it is possible to
construct pebble justifications once the solution is known (on the condition of accepting
fractional pebbles); but it is difficult to see how such pebble proofs could be found if
one did not know the solution already.16 What then?

The first step will be to show that the equality of shares implies that the absolutely
defined contributions constitute an arithmetical progression. A possible means for
showing this is used amply in the Liber abbaci, namely the line diagram (but not
used for these problems). Let us first try (Fig. 4) the more intricate case where the
absolutely defined contribution is taken first; for convenience I shall use letter symbols,
but pointing and words could do the same:

AB represents Sn , that is, the amount that is at disposition when the nth share is to be
taken, n being arbitrary (but possible).17 This share is AD, consisting of AC = an and
CD = φCB. The following share is DF , consisting of DE = an+1 and EF = φEB.

16 For the relatively simple case d = 4 1
2 , α = 1, ε = 3 (whence � = 3 1

2 · 3 = 10 1
2 , n = 4 1

2 − 1
3 = 4 1

6 ,

the square-grid diagram corresponding to the pebble justification looks as shown in the following figure:

Each row is equal in area to �, and the number of rows is N = 4 1
6 . If we remove α = 1 in the first row, 9 1

2
are left. The lower 3 rows can be divided into three columns with area 3 · 3 1

6 = 9 1
2 , and a narrow column

with area 1 1
2 · 3 1

6 = 4 3
4 = 1

2 · 9 1
2 . The 9 1

2 left over in the upper row is thus, as it should be, 1
d of the

remainder. When it is removed, we are left with the lower 3 1
6 rows. α + ε = 4 is removed from the upper

of these, leaving 6 1
2 in the same row and 3 1

2 times 6 1
2 in the following; etc.

After having gone through this operation I suppose that the reader, firstly, will find it unlikely that
somebody should invent this diagram unless it be done (as here) from the already known result; and,
secondly, will doubt that Fibonacci’s formulae (or those we shall encounter below in the Compendy de la
praticque des nombres) were derived from such diagrammatic considerations. One could ask for no better
example of an a posteriori synthesis which is of no help whatsoever in the reconstruction of a corresponding
analysis.

I also expect the reader to find new sympathy for Plato’s insistence (Republic 525d–526a, ed., trans.
[Shorey 1930: 162–165]) that it is a bad habit to transfer to the realm of theoretical arithmetic that breaking
of the unit with which shopkeepers were conversant. “Visual” mathematics, seductive as it is in simple
cases, becomes much more difficult than formal calculation as soon as intricacies arise; symbolic algebra
conquered for good reasons.
17 The reason Fibonacci offered no proof of this kind may be that the structures of secondary logic (“for
any …”, “for all …”, etc.) were not integrated in his mathematical standard language and therefore did not
offer themselves readily for the construction of proofs. The present line-diagram proof, if made during or
before his times, is likely not to have looked at an arbitrary step but to have started from the first and then
given an argument by quasi-induction. Fibonacci, making the calculation in numbers that change from step
to step, could not generalize his result.
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Fig. 5

Since AD = DF = �, CB = CD + DB, and EB = EF + FB, we find that

an+1 − an = φ(CB − EB) = φ(CD − EF) + φ(DB − FB)

= φ(an+1 − an) + φ�,

whence

(1 − φ) · (an+1 − an) = φ�

and further (in order to avoid a formal algebraic division) the proportion

� : (an+1 − an) = (1 − φ) : φ.

By means, for instance, of Euclid’s Data, prop. 2 [trans. Taisbak 2003: 254], “If a
given magnitude [here �] have a given ratio [here (1−φ) : φ] to some other magnitude
[here an+1 − an], the other is also given in magnitude” (or applying simply the rule of
three), we find that an+1 −an has the same value irrespective of the step where we are.
In consequence, the absolutely defined contributions have to constitute an arithmetical
progression.

If the fraction is taken first, we may use the line diagram in Fig. 5:
In this case, φ AB + an = φDB + an+1, and therefore an+1 − an = φ(AB − DB)

= φ�, which again means that the absolutely defined contributions must form an
arithmetical progression.

In both cases, once we are so far it is legitimate to construct the rules from the
equality of the first two shares only. This can be done by somewhat laborious but simple
first-degree algebra—Fibonacci shows one way to do it, but there are alternatives. It
can also be done by means of two false positions (see note 19), and probably by still
other methods. Possibly, one might reconstruct the way that was actually followed in
order to find the rules from the detailed make-up of these. I have not been shrewd
enough to do so.

5 Fourteenth century abbacus writings

In its basic inheritance shape, the problem turns up in quite a few fourteenth century
abbacus treatises. The earliest of these is the Livero de l’abbecho [ed. Arrighi 1989:
116].18 Here we find a problem of type (7, 1| 1

24 ) dealing with a heritage consisting of

18 On the words of its compiler, this treatise purportedly written “secondo la oppenione de maiestro
Leonardo de la chasa degli figluogle Bonaçie da Pisa” has been believed to be extracted from the Liber
abbaci, and from internal evidence it has been supposed to be from 1288–1290. The internal evidence
consists of loan documents which turn out to be copied from elsewhere (whether original documents or an
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an unknown number of sheep. The rule that is given is that “we should strike off one
from the fraction, and 1

23 remain, and we shall strike off 7 from 24, and 17 remain”
(which gives 17 sons and 23 sheep for each son). These rules are clearly not derived
from Fibonacci’s rule (4b) for the intricate case, which would give the number of
sons as (24-1) ·7 − (7 − 1) · 24. Instead they may come from the observation that
the outcome corresponds to that of the distribution (1, 1| 1

24 ), the six first shares being
omitted; but the mathematical quality of the rest of the treatise does not make it likely
that the compiler was able to get that idea on his own.

Paolo Gherardi’s Libro di ragioni, written in Montpellier in 1327, contains a pro-
blem of type (1, 1| 1

10 ) [ed. Arrighi 1987: 37 f ]; the story deals with a father who
gives 1 mark of gold and 1

10 of the gold that remains in his box to the first son, etc.
The numbers are thus like those of Jacopo, but already the return to the traditional
inheritance story shows that Jacopo is not the source—or at least not the only source.

The Libro de molte ragioni [ed. Arrighi 1973: 199], a conglomerate from Lucca from
c. 1330, has another inheritance story with the same numbers (1, 1| 1

10 ), sufficiently
different (both at the level of the story and in the formulation of the rule) to exclude
any direct link.

In the Istratto di ragioni [ed. Arrighi 1964: 140 f ]—a problem collection writ-
ten down in c. 1440 but claiming to go back to Paolo dell′Abbaco (c. 1340) and
in any case likely to copy material from that period—we find two variants, namely
(1000, 1000| 1

10 ) and ( 1
6 |10, 10). The former (about bizanti) is solved by the usual rule

(the denominator of the fraction minus 1), the latter (about fiorini) by a double false
position (using only the equality of the first two shares).19

footnote 18 continued
earlier abbacus treatise cannot be decided), for which reason the real date must be somewhat later (hardly
much, the language seems rather archaic). As regards the link to Fibonacci, the treatise does contain a
number of advanced problems borrowed from the Liber abbaci; but these are external decoration, the stem
of the treatise is independent of Fibonacci (the Liber abbaci as well as any other work he may have written,
as revealed by linguistic analysis), and repeatedly the compiler reveals not to understand what he copies
from Fibonacci [Høyrup 2005a]. The problem about the unknown heritage is located in a final collection
of mixed questions, some of which are taken from the Liber abbaci and others not.

The problem type is not represented in the Columbia algorism [ed. Vogel 1977], which now appears to
be the earliest extant abbacus text (from c. 1280 or not much later, albeit the manuscript we possess is a
fourteenth century copy), cf. [Høyrup 2005a: 27 n. 5].
19 The formulation runs thus:

we shall find a number such that, when 1
6 is detracted and then 10, and from the remainder again 1

6 and

then 20, one [detraction] is as much as the other; and therefore posit that this number be 60, seize 1
6 of 60,

it is 10, and 10 more, you get 20; you have when you detract 20 from 60, 40 remain, and now seize 1
6 of

40, which is 6 2
3 , and 20 more, you get 26 2

3 . So that you see that he has 6 2
3 more than the first. And now

posit another number, and let us posit that it is 120, and therefore seize 1
6 of 120, it is 20, and 10 more,

you get 30. You have that the remainder is 90, now seize 1
6 of 90, which is 15, and 20 more, you get 35.

You have that to the second falls 5 more than to the first; so that you will say: and for 120, 5 more. And
now follows the rule you have heard several times in this book, according to which the true total heritage is
6 2

3 ·120−5·60

6 2
3 −5

= 300 fiorini. The single share is then found as 1
6 · 300 + 10 = 60, and the number of sons

as 300/60 = 5.
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In an anonymous problem collection belonging to the Vatican Library, Vat. Lat.
10488 (fol. 66r ), compiled in Venice in 1424 and likely to contain material which,
when not copied directly from fourteenth century material (part of it is) appears at
least to reflect fourteenth century manners, there is an example of type (7, 1| 1

30 ), with
solution N = 30 − 7, T = (30 − 7) · (30 − 1). Both the type and the solution thus
coincide with the sheep problem from the Livero de l’abbecho, but the formulation is
so concise that only those who knew the genre would understand what was meant.20

Somebody understood: there is a marginal commentary in a different hand containing
a numerical proof.

6 Arabic pseudo-kin

Due to the kind assistance of Mahdi Abdeljaouad (personal communication), I have
come to know about two Arabic problems obviously inspired from the simple version
of the problem type we are discussing. Both replace it by something closer to the
orthodox “box problem” (although not changing it as radically as the late Byzantine
analogue discussed around note 12) yet without taking advantage of the change.

One comes from Ibn al-Yāsamı̄n’s Talqı̄h al-afkār f ı̄’l ‘amali bi rušūm al-ghubār
(“Fecundation of thoughts through use of ghubār numerals”)—written in Marrakesh
in c. 1190. It runs as follows:21

An inheritance of an unknown amount. A man has died and has left at his death to
his six children an unknown amount. He has left to one of the children one dinar
and the seventh of what remains, to the second child two dinars and the seventh
of what remains, to the third three dinars and the seventh of what remains, to the
fourth child 4 dinars and the seventh of what remains, to the fifth child 5 dinars
and the seventh of what remains, and to the sixth child what remains. He has
required the shares be identical. What is the sum?
The solution is to multiply the number of children by itself, you find 36, it is the
unknown sum. This is a rule that recurs in all problems of the same type.

The other is found in the al-Ma‘ūna f ı̄ ’ilm al-hisāb al-hawā‘ı̄ (“Assistance in the
science of mental calculation”) written by Ibn al-Hā’im (1352–1412, Cairo, Mecca
and Jerusalem, and familiar with Ibn al-Yāsamı̄n’s work):22

An amount of money has been diminished by one dirham and the seventh [of
what remains]; by two dirhams, and then the seventh of what remains; then three
dirhams and the seventh of what remains; then four dirhams and the seventh of

20 “Somebody makes testament. To the first son he leaves 7 1
30 , to the second 8 1

30 , to the 1
3 [thus for “third”]

9 and 1
30 , and continuing thus until there was neither more money nor more sons. How many fiorini did

he have? Do thus, detract 7 from 30, remains 23, because he said first 7, and he had 23 sons. Now for 1
30 ,

detract 1 from 30, remains 29, multiply 23 times 29, it makes 667, and he had 667 fiorini. And it is done.”
On fols 51v , 68v and 69v , problems of types (1, 1| 1

10 ), (5, 1| 1
20 ) and (3, 3| 1

10 ) are formulated similarly but
even more succinctly. The third of these gives the solution N = (10-1)/1 = 9, T = 9.·9.· 3, wrongly referring
the factor 3 to the first bequest α, not to ε.
21 My translation from Mahdi Abdeljaouad’s French translation.
22 Still my translation from the French.
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what remains; then five dirhams and the seventh of what remains. In the end, six
remain.
Take the square of the six that remain, it is the amount which was asked for.

The number of shares is thus given in both versions; none the less, both still use
the same rule as the “Christian” version of the simple problem. As we observe, Ibn
al-Yāsamı̄n omits the information that the last share is determined according to the
same rule as the preceding ones, whereas Ibn al-Hā’im does not require the shares to
be equal. Both pieces of information are indeed superfluous.

We also observe that Ibn al-Hā’im’s version is not overdetermined; it can be solved
backwards step by step, in this way:

The fifth share is 5 + 1
7 A, where A + 5 is what is left after the taking of the fourth

share; but this remainder is also the sum of the fifth and sixth shares. Hence,

A + 5 = 6 + 5 + 1
7 A,

from which follows A = 7. The fourth share is 4 + 1
7 B, where B + 4 is what is left

after the taking of the third share; but this is also the sum of the fourth, fifth and sixth
shares; etc.

Obviously, a similar backward calculation could be made for varying fractions and
for absolutely defined contributions that are not in arithmetical progression. However,
the rule is only valid for a constant fraction 1

N+1 , where N is the given number of
shares, and if the absolutely defined contributions are 1 + (i − 1). There is hence no
doubt that Ibn al-Hā’im’s problem descends from the “Christian” problem and results
from an attempt to assimilate it to a more familiar structure.

Ibn al-Yāsamı̄n’s problem is overdetermined, but the evident way to solve it would
still be a backward calculation: if S is what is left when the fifth share is to be taken,
the fifth share is 5+ 1

7 (S −5), and the sixth share is what is left, i.e., S −5− 1
7 (S −5).

From their equality follows that S is 12, each share thus 6, and the total 6 · 6. The rule,
once again, is valid but not naturally adapted to the actual problem.

The conclusion is that mathematicians from the Maghreb or al-Andalus23 had come
to know about the problem type already before the Liber abbaci was written; but their
use of a rule which is better adapted to the “Christian” version of the problem shows
that this latter version with its unknown value of N was not derived from the “Islamic”
box-problem versions but was indeed the original form. Whether Ibn al-Hā’im knew
the problem from the Maghreb mathematicians or through other channels cannot be
decided at present. In any case, the aberrant character of the two Arabic problems are
strong evidence that Fibonacci and Planudes did not get their problem from the Arabic
world—if it was known and accepted there, why should our two authors need to make
it more familiar by making N a given magnitude? Ibn al-Yāsamı̄n confirms that the
problem type which inspired him was indeed familiar (in a place that might inspire
him and where he expected to find readers) before the Liber abbaci was thought of.

23 Ibn al-Yāsamı̄n’s “all problems of the same type” seems to prove that he was not the only mathematician
in his area to know about them. He had been active in Morocco and in Muslim Spain; he may have
encountered the derived problem type in either place.
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7 Provence and Barthélemy de Romans

The problem type (1, 1| 1
8 ) turns up in a manuscript of the Trattato di tutta l’arte

dell’abacho from 1340 (Rome, Accademia Nazionale dei Lincei, Cors. 1875, fol. 85v).
The rule is once again that the number of sons is found by subtracting one from the
denominator—“if he had said 1

9 to them, you would subtract one from 9, but because
he said 1

8 , subtract one from 8, 7 remains, and 7 were the sons”. It is likely but not
certain that the author picked up the problem in Avignon, where the original was written
around 1334.24 In any case the genre is well represented in treatises written in Provence
in the early fourteenth century (Jacopo in 1307, Paolo Gherardi in 1327), being absent
only from the Liber habachi [ed. Arrighi 1987], written around 1310, almost certainly
in Provence and almost certainly not by Paolo Gherardi.25 It is absent from most other
fourteenth and fifteenth century treatises from the Ibero-Provençal area I know about -
thus from the Castilian Libro de arismética que es dicho alguarismo [ed. Caunedo del
Potro and Córdoba de la Llave 2000: 133–213], from Francesc Santcliment’s Summa
de l’art d’aritmètica from 1482 [ed. Malet 1998]; from Francés Pellos’s Compendion
de l’abaco from 1492 [ed. Lafont and Tournerie 1967]; and (as far as can be concluded
from the description in [Sesiano 1984b]) from the “Pamiers algorism.”26 However, it
is represented in the mid-fifteenth century Traicté de la praticque d’algorisme by four
problems with the types (1, 1| 1

10 ), (3, 1| 1
10 ), ( 1

10 |1, 1) and ( 1
10 |2, 2);27 in Barthélemy

de Romans’ Compendy de la praticque des nombres;28 and in the problem collection
which Nicolas Chuquet attached to his Triparty en la science des nombres.

No known source ever treated the genre as fully as Barthélemy de Romans’ Com-
pendy. Maryvonne Spiesser [2003] not only offers an edition of the pertinent part of

24 For this dating, see [Cassinet 2001]. The problem is not in what appears to be a draft autograph of
the treatise (Florence, Biblioteca Nazionale Centrale, fond. prin. II,IX.57), but since this draft does not
represent the finished treatise its author may well have added even the actual problem afterwards (other
material with no parallel in the draft but in the same hand as the main treatise has been added in the Lincei
manuscript; when metrologies are referred to in these problems, they are the same as in the main treatise,
and of Provençal rather than Tuscan type).
25 The date being rather late and the orthography purely Tuscan, it is not certain whether we should count
as genuinely Provençal an occurrence of a problem (1, 1| 1

7 ) in Francesco Bartoli’s Memoriale, written
down in Avignon before 1425 and copied from unidentified abbacus material [ed. Sesiano 1984a: 138].
We may notice, however, that Bartoli’s problem shares with Paolo Gherardi’s version (and with no other)
that everything is measured in weight units of gold, not in coin (here ounces, in Gherardi marks of gold).

Bartoli’s rule is the usual one—that subtraction of 1 from 7 gives both the number of sons and the amount
each one receives; maybe the Papal courtly environment is the reason that his testator is a count.
26 It is also absent from two twelfth century Latin works prepared in Iberian area where it could have been
expected to turn up if it had been known, the Liber augmenti et diminutionis [ed. Libri 1938: I, 304–369]
and the Liber mahamaleth (at least in as far as can be determined from the description of the latter work in
[Sesiano 1988].
27 I used the transcription in Stéphane Lamassé’s unpublished dissertation, for access to which I am grateful.

The rule given in the Traicté for the case ( 1
10 |2, 2) is mistaken, and corresponds instead to the case

( 1
10 |2, 1).

28 Barthélemy probably wrote this treatise around 1467, but what we possess is a revised redaction from
1476 due to Mathieu Préhoude - see [Spiesser 2003: 26, 30]. Barthélemy himself presents his work as
an extension of an earlier treatise from his own hand (possibly the just-mentioned Traicté de la praticque
d’algorisme) aimed at giving his readers profounder understanding.
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the text (pp. 391–423) and a translation into modern French (pp. 543–579) but also
a substantial commentary (pp. 139–156), of which I shall take advantage so as to
concentrate on what is important in the present context; page references to the treatise
refer to Spiesser’s edition.

In general, Barthélemy prefers to present first the general principles of a matter, and
afterwards the examples. Thus also to some extent here, but with the proviso that this
part of the text falls in two major sections, each of which contains general principles
and examples.

Barthélemy gives the genre a name not known from earlier sources and probably
his own invention, progressions composees;29 he also gives a name to the quantity
1
φ

= q
p = d, the vray denominateur or “true denominator.” Since this entity was used

by Fibonacci in a way that suggests the idea not to be his own and since the name is
close at hand it is less certain that even this term was Barthélemy’s invention.

Barthélemy starts by distinguishing between deux manieres, “two modes”, in the
first of which the absolutely defined contributions (les nombres de la progression)
are taken first and the fraction of what remains (la partie ou les parties que l′on veut
du demourant) afterwards; in the second, the “part or the parts” are taken first, and
afterwards “the numbers that make the progression” from what remains. Then the
“true denominator” is explained and exemplified, and it is pointed out that in the first
mode, four numbers are fundamental: the true denominator (d), “the number that is
one less than the denominator” (d − 1), “the number which makes the progression”
(ε) and the “number by which the progression starts” (α); he does not forget to say
that the latter two may be equal, but they should none the less be treated as different.
He also points out that three hidden numbers are sought for, “the number that can be
divided by this progression” (T ), “how much there will be in each place” (�) and
“how many places there will be in the progression” (N ); he claims as a general fact
that T > � > N .30

Thereby he has come to the enunciation of a “general rule” for progressions of the
first kind:

� = (d − 1) · ε, (15c)

T = ([d − 1]ε − α) · d + α, (15a)

N = T/�. (15b)

(15c) coincides with (10c), and (15a) easily reduces to (10a), whereas Fibonacci’s (4a)
reduces to ([d −1]α−[α−ε]d) ·(d −1) if we introduce into it the true denominator d.
The rule is illustrated by three examples of types (3, 3| 1

7 ), (2, 3| 2
11 ) and (3, 2| 3

13 ). The
first example is told to deal with the division of a number according to the progression-

29 Firstly, the topic is never grouped together with arithmetical progressions in other sources; secondly,
there are some suggestions in Barthélemy’s text that he might be accustomed to find it together with the
double false position, in agreement with the occasional use of this method to solve the problems—see
below.
30 As we have seen, this is not strictly true—if α = ε = 1, N = �. But for all other integer positive values
of α and ε (the only ones considered by Barthélemy and our other authors) it is true for acceptable values
of d.
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in the end it turns out that a division among N “men” is thought of; the two others
only speak about “making a progression.” We notice that in the first problem, α = ε,
in the second α > ε, in the third α < ε. This principle is pointed out by Barthélemy.
He also observes, however, that the first deals with “one part”, the second with “two
parts”, the third with “three parts”; this is wholly unimportant as long as the “true
denominator” is used, and could be a reminiscence of the similar distinction (though
only between “a part” and “parts”) in Boethian arithmetic.

Then Barthélemy points out that the problems where α = ε “can be done by another
practice, for which this is the appurtenant rule”:

N = d − 1, (16b)

� = (d − 1) · ε, (16c)

T = N 2 · ε, (16a)

This rule is then applied to a final example of the first mode, (3, 3| 2
9 ), and it is pointed

out that the outcome would have been the same if rule (15) had been applied. From
Barthélemy’s words and argument it is fairly obvious that he did not arrive at the
specific rule by reducing the general one; but is seems likely that he himself formulated
as a rule a practice that he had only encountered in the shape of particular problems
(since the inheritance problems are all of this type, many with ε = 1 but others with
ε = 10, ε = 100 or ε = 1, 000, and since they commonly find N ,� and T in this
order, this is quite possible). He does not bother the reader with any argument that one
set of rules can be derived from the other by reduction, and the formulation of a such an
argument would indeed be quite cumbersome in the absence of algebraic symbolism
(provided Barthélemy had the idea, which is far from certain—mathematical intuitions
are rarely more than one step in advance of that which established familiar terminology
and concepts can grasp).

For the “second mode” this rule, valid for the case α = ε , is given first:

N = d − 1, (17b)

� = d · ε, (17c)

T = (d − 1) · d · ε, (17a)

which is then applied to the cases ( 1
7 |2, 2) and ( 2

11 |3, 3). Nothing is said about this
rule corresponding to a practice, but that may be because the corresponding general
rule has not yet been presented—indeed, when all the rules with appurtenant examples
have been explained, they are spoken of as les praticques precedants. In any case there
is no doubt that this is the counterpart of the simplified rule (16) for the case (ε, ε|d).

There may be a good reason for giving separately the rule for the case α = ε.
Afterwards, indeed, separate rules are given for the cases α < ε and α > ε− and these
rules have to be stated separately, because they are of the same type as Fibonacci’s (5)
and (6) though not exactly the same, respectively

T = [(ε − α)q + (q − p)α] · q
p2 , (18a)
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N = (ε − α)q + (q − p)α

εp
, (18b)

� = εq

p
, (18c)

and

T = [(q − p)α − (α − ε)q] · q
p2 , (19a)

N = (q − p)α − (α − ε)q

εp
, (19b)

� = εq

p
. (19c)

The examples are ( 1
7 |3, 5), ( 2

9 |3, 5), ( 6
31 |2, 3), ( 1

6 |5, 3), ( 2
11 |5, 2) and ( 5

19 |5, 3).
The totally different approaches to the two modes, one by means of the true

denominator and the other one (except when ε = α) by means of p and q, suggests
that all the rules presented here are borrowed (this is also proposed by Maryvonne
Spiesser [2003: 152]). The discrepancy between Barthélemy’s treatment of the two
modes makes it implausible that the Liber abbaci was his source.31

What comes from this point (p. 402) onward is likely to be Barthélemy’s own
original contribution. First he offers a systematic exposition of the principles of rules

31 Maryvonne Spiesser [2003: 156] finds it to be a “very plausible.” hypothesis that the Liber abbaci
was the direct source—a conclusion which I endorsed in [Høyrup 2005b] because of the lack of evi-
dence for alternatives. Since the present broader investigation of the question shows that non-Fibonacci
solutions even to the sophisticated versions must have circulated, this argument can no longer be consi-
dered valid. Spiesser takes the shared occurrence of uncommon fractions like 5

19 and 6
31 as supple-

mentary evidence for an intimate connection; however, Barthélemy’s range of non-aliquot-part fractions(
2
11 , 3

13 , 2
9 , 6

31 , 5
19 , 3

11 , 4
15 , 5

21 , 6
25 , 4

27

)
goes far beyond what we find in Fibonacci

(
2
11 , 5

19 , 6
31

)
but

remains within the same vaguely defined family—all denominators are odd, most are prime, the values
fall between 0.148 and 0.272 (all but one between 0,181 and 0.272), the numerators being evidently larger
than 1; no denominator except 13 occurs in more than one fraction. If we restrict ourselves to those of
Barthélemy’s fractions which appear in the part of his text discussed so far, that is, the part which seems

to build upon borrowed rules and therefore perhaps also on borrowed examples
(

2
9 , 2

11 , 3
13 , 5

19 , 6
31

)
, the

characteristics are even more narrowly defined: all values fall between, 0.181 and 0.263, no denominator
appears more than once and all denominators are prime. Strikingly, all but two non-reducible fractions
with denominators below 37 which fulfil these (partly mathematical, partly aesthetic) criteria are used—the
exceptions being 5

23 and 7
29 . If both Fibonacci and Barthélemy drew on a fund of problems defined by these

criteria, simple statistics shows us that the coincidences are not striking: if Fibonacci were to select 3 from
the list of 7 possible fractions, the probability that all three would fall within the range of 5 values used

by Barthélemy is
(

5
3

)
÷

(
7
3

)
≈ 28%. The uniformity of the possibly borrowed examples in Barthélemy’s

text shows that such aesthetic and mathematical criteria were efficient (his own probably added examples,
though widening the limits of the permissible a bit, also confirms that the criteria were felt, since his devia-
tions from the canon that is implicit in the first part are quite modest).

Further, if Barthélemy had really borrowed from Fibonacci problems with φ equal to 2
11 , 5

19 and 6
31 ,

one should also expect him to have borrowed the appurtenant sets (α, ε) - but this only happens in 1 of 9
instances (1 of 7 if we count pairs (α, ε|φ) and (φ|α, ε) with coinciding parameters as a single instance,

namely for the case
(

6
31 |2, 3

)
). Given how often the set (α, ε) = (2, 3) is used, this is once again no more

than could be expected from a random distribution.
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Fig. 6

(18) and (19) together with their counterparts for the first mode (almost coinciding
with (1) and (4) as set forth in the Liber abbaci) and summarizes everything in a single
rule; even here, the ambiguities of a verbal expression makes him insert an example
( 6

31 |3, 3). Next, “for the practice of this rule and in order to see rapidly how one should
make the necessary multiplications for the three numbers that should be divided by
the three dividers to get the three hidden numbers”, he shows “how the necessary
numbers can be put into a diagram”, as shown in Fig. 6—at first in general form, with
the numbers described in technical verbal terms defined by Barthélemy (here replaced
by our usual symbols).

A new sequence of numerical examples follows in which the diagram is used, all
in pairs representing the two modes.32 At a certain point (p. 413) he shows how the
diagram applies to the rules based on a “true denominator.” He explains that the three
numbers in bottom (not counting those in [ ]) are integers and the others actually
fractions, a denominator equal to p being tacitly understood, and that there is only one
divisor (viz εp, which reduces to ε, p and p2 being both reduced to 1). The exposition
corresponds to what is shown here in Fig. 7, and so do the diagrams used in the
subsequent numerical examples.33

The whole treatment of division according to progressions is made under the general
heading of “two false positions”, whose rule is simply stated (p. 390) as plus et plus,
meins et meins, sustrayons. Plus et meins, adjoustons—“More and more, less and less,
we shall subtract. More and less, we shall add.” The meaning is that if both initial
guesses lead to an excess or to a deficit, the rule with addition is to be used. If one

32 The three divisors written in [ ] in the diagram—sometimes as here to the right, sometimes to the left—are
not in the general diagram but only in the particular examples.
33 Maryvonne Spiesser [2003: 148] finds that “the author gets lost and loses us in an exposition that seems to
lead nowhere.” in this change between two representations of the problem. Once we have accepted that both
sets of rules offered in the first part of the chapter are inherited, one might rather find the present discussion
to be a praiseworthy (and, on the conditions of the terminological difficulties, mathematically blameless)
verification that the two approaches are equivalent. This time Barthélemy does not satisfy himself with a
control that the two ways lead to the same numerical result (as earlier on, when the equivalence of rules
(15) and (16) were argued, and as commonly done in the abbacus tradition).
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Fig. 7

leads to an excess and the other to a deficit, the variant with subtraction should be
used. The rule itself (weighing the two guesses in inverse proportion to their error)
is not presented, instead Barthélemy goes directly first (briefly) to “simple” (that is,
arithmetical) and then to the composite progressions discussed here.

On p. 420 Barthélemy returns to the topic of the heading and legitimizes it by a
claim that distributions according to progressions cannot be made by means of the
rule of three or a single false position but only by a double false position. As regards
the proportional distribution proportionally to a given arithmetical progression this
is evidently false. However, Barthélemy asks for something different, namely for the
starting point α of an arithmetical progression α + (α + ε) + · · · + (α + 4ε) with
given sum (e.g., 60) and given ε (e.g., 3), and then he is right. After that he submits
the composite progressions to the double false. His method is not the one used in the
Istratto di ragioni (see above, note 19) and not independent of the rules that he has
already set forth (and hence it presents no alternative to these). Indeed, � is first found
by (15c) or (17c), depending on the mode; afterwards, two guesses for T are used,
and for each the first share (α + φ · (T − α) or φT + a, depending on the mode) is
calculated; from the two errors the true value of T can then be determined. In order
to show how convenient guesses depend on the value of φ, two examples follow—
(2, 3| 2

7 ), for which the guesses are T1 = α = 2, T2 = α + q = 9, and ( 1
4 |5, 3), with

guesses T1 = q = 4, T2 = 2q = 8).34

34 Thereby, the complete list of Barthélemy’s examples is:

(3, 3| 1
7 ) ( 1

7 |3, 5) ( 6
31 |3, 3) (2, 3| 5

21 ) ( 3
11 |3, 3)

(2, 3| 2
11 ) ( 2

9 |3, 5) (3, 3| 3
11 ) ( 5

21 |2, 3) (3, 5| 6
31 )

(3, 2| 3
13 ) ( 6

31 |2, 3) ( 3
11 |3, 3) (5, 3| 6

25 ) ( 6
31 |3, 5)

(3, 3| 2
9 ) ( 1

6 |5, 3) (2, 2| 4
15 ) ( 6

25 |5, 3) (5, 3| 6
25 )

( 1
7 |2, 2) ( 2

11 |5, 2) ( 4
15 |2, 2) (3, 2| 4

27 ) ( 6
25 |5, 3)

( 2
11 |3, 3) ( 5

19 |5, 3) (3, 5| 6
31 ) ( 4

7 |3, 2) (2, 3| 2
7 )

( 6
31 |3, 5) (3, 3| 3

11 ) ( 1
4 |5, 3)

The two columns to the left contain what is likely to be borrowed material, the three to the right what he
probably constructed himself in order to illustrate the general rule and the use of the diagram.The somewhat
wider limits for the choice of φ was already discussed; everywhere, we notice, α and ε are chosen among
the numbers 2, 3 and 5.
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Fig. 8

The first, general part of the discussion of the use of the double false position is
illustrated by a truncated version of the diagram (Fig. 8), containing what is needed
for the determination of �. Already for this reason—but also because of the rather
pointless introduction of an alternative that is no proper alternative, we must presume
Barthélemy to be responsible for the chimaera in question. However, the precedent of
the Istratto di ragioni makes it plausible that the use of the rule of double false for
such problems was known; this would also explain why Barthélemy dealt with the
topic under a heading with which it has preciously little to do, and where the fragile
connection that does exist is only shown in the very end.

8 Chuquet

Apart from Barthélemy, nobody dedicates as much space to the genre as does Chuquet.
The place where he does so is in the problem collection attached to his Triparty from
1484. The problems, as listed in [Marre 1881: 448–451], are of the following types:

(1, 1| 1
10 ) (2, 3| 2

11 ) ( 1
7 |3, 5) ( 1

6 |5, 3)

(2, 1| 1
7 ) (3, 2| 3

13 ) ( 2
9 |3, 5) ( 2

11 |5, 2)

(2, 3| 1
8 ) ( 1

7 |2, 2) ( 6
31 |2, 3) ( 5

19 |5, 3)

( 2
11 |3, 3)

The first problem in the left column is the one we encountered repeatedly, one
of the two paradigmatic types—the other being (1, 1| 1

7 ); the second problem is of
the same kind as the one found in the Livero de l′abbecho. The third still has an
integer denominator and looks simple, but this appearance is already deceitful: the
parameters lead to a non-integer value of �. None of these are found in Barthélemy’s
text. The rest are identical with problems in the Compendy which Barthélemy is likely
to have borrowed. Of these presumably borrowed problems only one is omitted by
Chuquet—namely (3, 3| 2

9 ); moreover, Chuquet brings them in exactly the same order
as Barthélemy. This can only have one of two explanations: either Chuquet copied
from Barthélemy, or both build (with or without written intermediaries) on the same
written source—no oral tradition would conserve the order of 10 problems intact when
this order is not dictated by some inner principle. Given that Chuquet stops exactly at
the point in Barthélemy’s list where the latter appears to begin his own contributions,
a shared source might seem to be the most likely explanation. On the other hand,
Chuquet was familiar with other parts of the Compendy—he refers to Barthélemy by
name when discussing his solution to a problem coming shortly before the composite
progressions [ed. Marre 1881: 442], and Chuquet may have chosen to stop where
Barthélemy goes into a “theoretical” exposition which did not agree with Chuquet’s
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taste. All in all, the shared source is a superfluous hypothesis which should fall victim
to Occam’s razor.

Indeed, Chuquet’s treatment of the material also differs from Barthélemy’s. Firstly,
all Chuquet’s problems are dressed in the traditional way, as dealing with a father
distributing the unknown contents of a chest to an unknown number of children; even
when N is not integer, Chuquet speaks of it as “the number of children.” Secondly, he
appears to enunciate only one rule,35 after the second problem:

Multiply the number which is 1 less than the denominator of the common part by
the number which makes the progression. Which multiplication [i.e., product]
you put aside, because it is the number of deniers which each one shall receive.
Then subtract from this multiplication the number which the first one takes
when he goes to the box, that is the number by which the progression begins.
And multiply the remainder by the denominator of the common part, to which
multiplication join the number by which the progression begins, because the
addition [i.e., sum] is the number of deniers in the box. Which number divide
by the multiplication which was put aside, that is, by the share which each one
gets, and you have the number of children.

In symbols once more:

� = (d − 1) · ε, (15c)

T = ([d − 1] · ε − α) · d + α, (15a)

N = T/�, (15b)

that is, Barthélemy’s “general rule” for the first case (above, text after note 30); Chu-
quet, however, speaks of d simply as the denominator, not as a “true denominator”,
and at this place in his text only integer values for d have in fact occurred.

What can be concluded is, firstly, that Chuquet knew the genre not only from
the Compendy but also from elsewhere; secondly, that he was not very fond of
Barthélemy’s ways of transforming it into some kind of coherent theory—as we know,
he had his own ways.36 He actually closes the sequence by the remark [ed. Marre 1881:
451] Toutes telles raisons facilement se peuent faire par la rigle des premiers, “all such
calculations can easily be done by the rule of algebra.”

35 “Appears.” because Marre’s transcription is incomplete, leaving out the calculations; however, since
Marre includes one rule he would probably have included others if they had been there. This inference was
confirmed to me by Stéphane Lamassé (personal communication), who has inspected the manuscript.
36 There is indeed a fundamental difference between Barthélemy’s and Chuquet’s aims. Barthélemy’s
schemes are similar in spirit to the schemes used in Indian medieval mathematics, schemes which
Nesselmann [1842: 302] saw as a kind of genuine symbolic algebra but which do not allow embedding and
therefore can express only that which is already known as an algorithm - Barthélemy’s transformation of
the scheme when he replaces p

q with 1
d is the maximal flexibility it allows and already strains it. Chuquet’s

use of underlining with parenthesis-function and his arithmetization of the designation of roots and powers
of the unknown, on the other hand, is a first step in the development of productive symbolization (the term
“productive” understood as in linguistics).
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As we have seen, it is not quite easy to make a genuine complete algebraic solution.
Whether Chuquet thought of making it is uncertain; he may well have been satisfied
with incomplete solutions like the one offered by Fibonacci.

9 The Aftermath in Italy

The “unknown heritage” did not disappear after Chuquet, its appeal caused it to be
repeated in several Italian problem collections from the fifteenth and the sixteenth
centuries.37

One of these collections is Tomaso de Jachomo Lione’s Libro da razioni from 1430
(Vat. lat. 4825, fol. 24r ), which solves a problem of the type ( 1

12 |1, 1) by means of a
partially corrupt variant of the standard rule, namely to subtract 1 from 12 in order to
find the number of sons, and then to multiply the outcome by itself in order to find
what is due to each heir.

In Pierpaolo Muscharello’s Algorismus from 1478, the last problem before the
geometry section is an inheritance problem of the type (1, 1| 1

9 ) [ed. Chiarini et al.
1972: 204 f ], solved by means of the standard rule (without mistake) for d = 9
and d = 7. Almost contemporary is Filippo Calandri’s De arimethrica opusculum
from 1491, republished in 1518. Here [Calandri 1518: i 5] we find a problem of type
( 1

10 |1000, 1000), with mere indication of the answer. Finally, Francesco Ghaligai’s
Summa de arithmetica from 1521 (later editions under the title Praticha d’arithmetica)
has the problems (1000, 1000| 1

7 ) and ( 1
7 |1000, 1000) and offers a slight elaboration

of the usual simple rules [Ghaligai 1572: 65r ].38 All four deal with an inheritance;
for later use we observe that Ghaligai’s testator is a padre di famiglia, a paterfamilias,
and that the equality of the shares is only discovered by the heirs after the death of
Muscharello’s and Ghaligai’s testators—two details which are not found in any of the
examples mentioned so far except in part in Chuquet, who has a père de famille.39

Even the various rules for the sophisticated cases must still have been accessible in
Italy (though perhaps in corrupt versions) well into the sixteenth century in ways we
do not know about - in the Practica arithmetice et mensurandi singularis [1539: fol.
FF iir ], Cardano deals with the case ( 1

7 |100, 100) not according to the usual rule but

37 Among the abbacus works which I have looked through without finding it, Piero della Francesca’s
Trattato d’abaco [ed. Arrighi 1970], Benedetto da Firenze’s Tractato d’abbacho [ed. Arrighi 1974] and
Luca Pacioli’s Summa [1494] should be mentioned. It is also absent from Pedro Nuñez’ Libro de algebra
[1567].
38 “Do thus, always subtract 1 from 7, that is 1

7 , 6 remains, and so many were the sons, which 6 multiply
by itself, it makes 36, and this multiply by s. 1,000, it makes s. 36,000, and so much money was in the box;
and in order to know how much is due to one, divide s. 36,000 by 6, s. 6,000 results.”; and “subtract again 1
from 7 that have signified 1

7 , 6 remain, and so many were the sons, then multiply 6 by 7, it makes 42, …”.
39 Later on in the sixteenth century, Tartaglia presents the simple problem both in the Quesiti et inventioni
[1546 : 98r−v]((1, 1| 1

8 ), saying that it had been proposed to him in 1524 by one fra Raphaelle) and in

the General trattato [1556: I, 245v–246r ](1, 1| 1
6 )—told here about a merchant who finds a purse and

distributes the ducati it contains to his sons). In both works, the rule is said to be that the subtraction of 1
from the denominator gives the number of sons as well as the amount each one receives; also in both works,
the outcome of variations of the denominator ( 1

7 being the alternative in the former work, 1
7 and 1

13 in the
latter) is explained.
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in agreement with this one:40

N = q − p, (20b)

T = [(q − p)q] · α

p2 . (20a)

(20a) results if α = ε is inserted in Fibonacci’s rule (5a) though with a different order
of the factors, which in itself makes the Liber abbaci an unlikely source. However,
(20b) is a mistake41 for

N = q − p

p
. (20b*)

This mistake makes it utterly implausible that Cardano would have used Fibonacci’s
work directly. Nor, as we see, can he have used any of the two recently printed works
where the problem type is present—Filippo Calandri and Ghaligai’s.

10 Elsewhere

In a personal communication, Maria do Céu Silva has kindly informed me about two
sixteenth century Portuguese occurrences of the simple version and provided me with
copies of the texts. The first occurrence is in Gaspar Nicolás’ (or Nycolas’) Tratado
da pratica Darismetyca from [1519: fol. 59v–60v], the second in Bento Fernandes’
Tratado da arte de arismética from [1555: fol. 102r ]. Both deal with an inheritance,
and the formulations suggest them to be mutually independent. Nicolás deals with the
case (1, 1| 1

7 ), with the alternative (1, 1| 1
9 ), Fernandes with (1, 1| 1

14 ). Both undertake a
complete verification of the result similar to what was offered by Jacopo and by none
of the later Italian authors we have considered, and Nicolás even introduces it with
the same phrase,42 but already the inheritance dress shows that Jacopo is not their
source. Nor are they based directly on any of the occurrences discussed above, but
both share characteristic phrases with the Trattato di tutta l’arte dell’abacho (above,
text preceding note 24)—phrases which are also somewhat similar to what we find

40 The story is singular: “Some dying man left sons and aurei, not knowing how many, and ordered that
when the first returned, he should receive 1

7 of the total and 101 [sic, typo for 100] more, and the second
…”. The equality of the shares is only discovered as the sons have returned, implicitly thus after the death
of the testator.
41 Since the division by 12 is dutifully performed in (20a), we are really entitled to speak of a mistake.
42 Jacopo, “se la voli provare”, Nicolás, “se quyseres prouar”. Fernandes has “como podeis prouar.”
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with Chuquet.43 Fernandes shares with Ghaligai the idea that the equality of the shares
is discovered after the death of the testator.44

These similarities suggest that the Portuguese writers draw on an Ibero-Provençal
rather than Italian traditions (for the present problem—in other respects it is highly pro-
bable that Fernandes drew on Italian material [Silva 2006]. The German occurrences
of the problem are more likely to be based on Italian inspiration.

The first of these is among the supplementary problems which Friedrich Amann
inserted in the Algorismus Ratisbonensis, ms. Clm 14908 [ed. Vogel 1954: 64 f ] in
1461.45 Friedrich (like Chuquet) does not speak of an inheritance but of a distribution of
money (florins) from a wechselpanck. He gives two examples, one, concerning sons, of
type (1, 1| 1

10 ), and one, concerning daughters, of type (1, 1| 1
6 ). He gives the usual rule,

but after the second problem he adds the rule for (a slightly corrupted version of) the
problem type ( 1

6 |0, 1), namely N = � = d—correct but not found in any other source.
In 1467–1468, Magister Gottfried Wolack held a lecture in Erfurt University which

is the earliest public presentation of abbacus mathematics we know about in Germany
(unless we count the copying of manuscripts of the Algorismus ratisbonensis as such);
its Latin manuscript appears to have had a certain influence.46 As a “tenth rule called ‘of
equality of parts’ ” he presents a problem of type (1, 1| 1

10 ) [ed. Wappler 1900: 52 f ],
which must either be a slightly paraphrased translation of Friedrich Amann’s first
problem or build on a close source for this problem; Wolack’s rule is also formulated
in very similar words.

Since Johannes Widmann knew Wolack’s manuscript very well [Wappler 1900:
54 f ], Wolack could be behind the appearance of the same type in Johannes Widmann’s
Behend und hüpsch Rechnung vff allen Kauffmanschaften from 1489 [ed. Gärtner
2000: 452 f ]. Widmann’s formulation, however, is quite different from what we find
in Amann and Wolack—Widmann starts by explaining that the intention of the testator
was to give the same to all his children. He also offers a sketch of a numerical proof simi-
lar to that of Jacopo, which none of the others have; after all, his source is thus likely to
be another one. Widmann, on his part, is certainly the direct or indirect source for Chris-
toff Rudolff [1525: M vv]—Widmann’s unusual initial explanation and other particu-

43 Where Trattato de tutta l′arte starts “A man has his sons, I do not know how many [non so quanti], and
gives them denari, I do not say how many”, Nicolás’ problem runs. “There is a man who has sons, I do not
say how many [nam dygo quantos], and he also has cruzados, I do not say how many.” Chuquet, in the same
vein but not quite the same way, tells that “there is a paterfamilias, who has children, one does not know
[on nescet] the number. And there is in his chest a sum of deniers, of which one does not know the amount
[le compte].” Where the Trattato tells about the absolutely defined contributions that they “grow [crescie]
for each one fiorino”, Fernandes state that “grow [vay crecendo] for each son one cruzado”. Chuquet has
“en augmentant tousious la porcion de ses enfanss de 1 denier.”
44 As we remember, Ghaligai shares the “paterfamilias” with Chuquet, who however only lets the children
“discover” the equality of their shares (in fact, Chuquet does not speak of a testament but of money distributed
from a chest).
45 For the description of the various manuscripts of the Algorismus and the dating of this particular part
of the relevant manuscript, see [Vogel 1954: 10–12, 14]. For the identification of the frater Fridericus who
wrote the manuscript with Friedrich Amann (and not with Friedrich Gerhart), see [Gerl 1999].
46 According to Menso Folkerts (personal communication), at least six manuscripts exist (Leipzig 1470;
Dresden C 80; Munich Clm 4387, Clm 26291, Clm 26639; Augsburg, StB 4◦ Cod. 21). Moreover, it was
studied by Johannes Widmann, who may even have used it for his teaching—see [Wappler 1900: 47, 54 f ].
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lars are borrowed. But Rudolff (whose aim it is to show the efficiency of coss, algebra)
does not refer to a rule, instead he offers an algebraic solution (based on the equality
of the first two shares, and as usually not controlling the validity of the solution).47

After Rudolff and Stifel, few German author seems to have been interested in the
unknown heritage.48 In France it had a more persistent success after having been taken
up by mathematically interested humanists (like the Germans, they stick to the simple
versions). The earliest examples I know about are in Buteo’s Logistica from 1560 and
Bachet’s Problemes plaisans et delectables qui se font par les nombres from 1612 (I
used the second edition from 1624). Buteo as well as Bachet and Ozanam, the latter in
1694, take up some of the typical Ibero-Provençal formulations (not the same ones!),
suggesting that the whole French branch did not depend on Italian inspiration.

Buteo [1560: 286–288] unprecedented but quite reasonably, thinks the testator
must be a vir logisticus, a calculator; his testament is of the type ( 1

6 |100, 100). Quite
exceptionally, the first share is that of the youngest heir; the equality of shares is
discovered only after the testator has passed away, suggesting that the heirs/readers
are supposed to expect the youngest to have received the least, with only 100 aurei
beyond the 1

6 which everybody gets (no writer for merchants and merchant sons had
ever expected such mathematical naivety!).

Buteo, well versed in much more than abbacus mathematics and the abbacus norm
for what constituted an adequate explanation, starts by pointing out that if each had
received only 1

6 , the number of heirs would have been 6; under the actual circumstances,
however,

the rule is that you always remove a unit from the name of the fraction, which
is 6, 5 remains for the number of sons.49 And hundred aurei in addition can be
nothing but the sixth of the share. This will therefore be 600 aurei. Multiply 600
by 5, the number of sons, it results that there were 3000 aurei in the money.

As we see, no argument is given for the rule N = d−1; the assertion “hundred aurei
. . . can be nothing but” uses that � = 1

5 T = 1
6 T + 100 (whence � = 5

6� + 100, and
therefore 100 = �− 5

6� = 1
6�). Finally it is added that the fraction cannot exceed 1

3 ,
because there cannot be less than two heirs, and that the denominator of the fraction
always exceeds the number of heirs by a unit.

Bachet’s problem [1624: 221–226] is of the type (1, 1| 1
7 ), dealing with “a man

who is going to die”; the equality is discovered after his death. After stating the rule

47 The problem is taken over in Michael Stifel’s “improved and expanded” edition from 1553 as rendered
in [Stifel 1615: 416].
48 I have noticed it in Simon Jacob von Coburg’s Ein neu und Wolgegründe Rechenbuch [1612; 236], whose
first edition is from 1565. Von Coburg says that his source is Giorgio Valla’s Arithmetic (a part of his De
expetendis et fugiendis rebus opus from 1501, which I have not beeen able to get hold of. The ultimate
source, however, is nothing but Planudes’s Calculus; both the example and the theorem are repeated.
49 The vocabulary shows Buteo to be rooted ideologically in the particular environment of French lawyer
humanism—arithmetica is regarded as vulgar/vernacular for logistica (the title of the work), an aliquot part
is a particula instead of pars, its denominator particulae nomen instead of denominatio, the number one to
be detracted is a monas and no unitas, an amount of money (or the chest containing the money?) is as(!).
Molière’s précieuses ridicules had spiritual grandfathers who were taken very seriously in their times (and
afterwards) - but Buteo, prudish as a linguist, was a good mathematician.
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(N = � = 7 − 1) he gives a proof that it works, very similar to that of Planudes
but using (as elsewhere in the work) the particular letter formalism developed by
Jordanus de Nemore.50 After the proof Bachet points out that one may choose a
different denominator (if only the same fraction is used for all children, and if only
the numerator is 1 - otherwise, the problem is told to be impossible) or take different
absolute contributions, if only (in our terminology) α = ε; then N is still d − 1, but
� becomes α · (d − 1). The proof of the corresponding rule is left to the reader.

After that, the rule for the case ( 1
7 |1, 1) is stated, and it is said that the proof is

analogous. Bachet goes through the generalization to cases ( 1
d |α, α), and once more

states (in our terminology) that d must be integer and α = ε.
Already closer to the Enlightenment and its use of science as polite leisure is

Ozanam’s Récréations mathématiques et physiques from 1694. The genre is represen-
ted once [Ozanam 1778: I, 185], namely by the type (10000, 10000| 1

7 ). The testator,
as with Chuquet and Ghaligai, is a père de famille; as with Ghaligai, Buteo and Bachet,
the equality of the shares is discovered after the death of the testator.

Ozanam does not state the usual rule, nor any other. Instead, his explanation runs
as follows:

One finds, by the analysis, that the possession of the father was 360000 livres; that
there were six children, and that each of them received 60000 livres. Indeed, the
first taking 10000, the remainder of the possession is 350000 livres, the seventh
part of which is 50000 which, with 10000, makes 60000 livres.The first child
having taken his share, 300000 livres remain; from which sum, when the second
has taken 20000 livres, the remainder is 280000, the seventh part of which is
40000 which, with the above 20000, still makes 60000 livres. And so on.

It is possible (but barely) that the calculation which follows upon the phrase “indeed”
(en effet) is meant to represent the “analysis” referred to initially (which would evi-
dently be a misuse of this high-flown concept but might sound well in the ears of
that public upon which Ozanam depended for his living); it is also possible that he
did perform some kind of analysis or thought of Bachet’s proof (which indeed is no
analysis but a synthesis a posteriori) but did not find it adequate for the same public;
most likely the term is an empty claim. In any case it presents us with no evidence that
Ozanam understood the matter better than, say, Jacopo da Firenze.

As mentioned initially, Euler deals with “this question [which] is of a quite particu-
lar nature and therefore deserves attention” in the Élémens d’algebre [1774: 488–491].
Unlike all writers on the topic since the fifteenth century except Bachet, Euler gives a
mathematical argument for the solution. In a problem of type (100, 100| 1

10 ), he intro-
duces the variables z (our T ) and x (our �), concluding that the successive remainders
are z, z − x, z −2x, . . . , z −5x, . . . , finds the successive shares according to the pres-
cription, and detects that the successive differences between these are “fortunately”
all equal to 100 − x−100

10 . Since they should be 0, he finds x = 900 (etc.).

50 Bachet may have known it from Lefèvre d’Étaples’ edition of Jordanus’s Arithmetica demonstrata
[1514]. The formalism should not be mistaken for an algebraic symbolism, since each operation leads to the
introduction of a new letter. In the present case, − is thus 7, B–1 becomes A, A−1 becomes C, A·A becomes
F, B · C becomes G, etc. The symbolism allows generality of the argument, not algebraic manipulation.
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Euler certainly could make a theoretically complete and coherent analysis which did
not to appeal to the good luck of a strongly overdetermined problem—but apparently
he could not do it in a way that would fit an elementary treatise.

Theoretically complete analyses (still only of the simple version) turn up in the
nineteenth century. Labosne [1859: 158] gives one in his paraphrase of Bachet, but
there are others. Most illuminating is perhaps the treatment of the matter which is
offered by Pierre Louis Marie Bourdon in his Élémens d’algèbre from 1817 (a uni-
versity textbook). Bourdon starts [1831: 66–71] by an easier version, almost the same
as the box-problem version proposed by Ibn al-Hā’im (see above, text around note
22): The number of children is given (3), the fraction is an abstract 1

n , the absolu-
tely defined contributions (assigned before the fraction) are the equally abstract a, 2a
and 3a.51 Afterwards [Bourdon 1831: 71–73] comes the problem (a, a| 1

n ), which
Bourdon points out to be overdetermined; as all algebraic predecessors except Euler,
Bourdon constructs an equation from the equality of the first two shares; afterwards,
he shows the validity of the solution he obtains by an algebraic version of Planudes’s
quasi-induction—no impressive advance in an abundant half-millennium.

11 Whence?

We may have given up the Comtean belief in general guaranteed progress. None the
less, we are accustomed to believe in over-all progress in mathematical insight since
the thirteenth century, caused by at least three factors:

– The general intellectual climate engendered by increased schooling and literacy at
all levels;

– the recovery and digestion of the ancient mathematical legacy;
– the creation of new tools, first of all symbolic analysis.

The story surrounding the unknown heritage is a strange exception to this rule of
progress, though admittedly concerned with a trifle which cannot change the overall
picture significantly.

Indeed, our very first source for the genre—the Liber abbaci—also shows it in
its fullest bloom, in the double sense of possessing already all the rules even for the
sophisticated versions and of presenting a partial algebraic solution for one of these
(showing it could be made for all cases). In the fifteenth century, Barthélemy also
knew the rules for simple as well as sophisticated versions but offered no reasoned
solution (apart from one depending on the rules); the Istratto, from the same century
but probably going back to c. 1340, offer a partial solution of one of the simple
cases by means of a double false position; dealing with a simple case, Euler does as
well as Fibonacci on one of the simple cases, and uses a method which would also
work for the sophisticated ones (although Euler does not say so and does not mention

51 It is not told explicitly, as by Ibn al-Hā’im, that the last share consists of nothing but the absolutely
defined contribution; but since nothing remains after the taking of 1

n , this should be evident. Since the
calculation runs over more than five pages (whereas my complete backward calculation of Ibn al-Hā’im’s
six-child version could be made on a A6-sheet of paper), this is hardly a proof of the superiority of Bourdon’s
algebra.
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these)—but like Fibonacci’s, Euler’s approach only “fortunately happens” to work
for the overdetermined problem. Well before Euler, Cardano had demonstrated some
mutilated version of the full rules but not the reason they worked—which indeed his
version of the rules would not have done for non-integer d.

Bodily organs which over time are gradually reduced by the combined force of
mutations and selection are known as rudiments—and rudiments point back to a situa-
tion where their counterparts were fully efficient. Speaking of “efficiency” when we
deal with a useless mathematical riddle may be unwarranted, but Fibonacci’s and
Barthélemy’s rules are much too complicated to have been found by trial and error.
Those who found them must have been good at mathematics—very good indeed, given
that they found them without having symbolic calculation at their disposal. Whatever
technique they used must have been quite refined, and thus carried by a competent
environment—which should allow us to characterize them in a vague sense not only
as “very good at mathematics” but as “very good mathematicians.”

This leaves us with a first difficult question: Since the problem type appears to be
unknown in the Arabic world (except for a clearly derivative, distorted import) and left
no traces in pre-1500 Spain which we know about, where and in what epoch should
we search for this environment and for these very good mathematicians?

All we can safely conclude is that they must be anterior to Fibonacci and Ibn
al-Yāsamı̄n, and that Fibonacci had access to their results. Among the places where
Fibonacci declares [ed. Boncompagni 1857: 1] he had pursued the study of abbacus
matters—in his boyhood Bejaïa, and afterwards “Egypt, Syria, Greece, Sicily and
Provence”—only Greece (i.e., Byzantium) and Provence fall outside the Arabic orbit
with certainty, while Sicily had a mixed Arabic-Byzantine heritage).52 The frequency
with which the problem turns up in writings from early fourteenth century Provence
and the links between these, Chuquet and the Portuguese writers suggests that the
encounter could have happened here, while Planudes’s presentation of a proof that
might reflect the original invention of the problem suggests the simple version might
have been transmitted within the Byzantine orbit. There is also some evidence that
Fibonacci encountered the simple variants in Byzantium, or wanted to suggest a link
to that place. He presents these variants in inheritance dress, not as pure number
problems, and the monetary unit he uses is the bizantium. This could seem to be a
trifle until one discovers that every time Constantinople is mentioned together with
some coin in the Liber abbaci, this coin is exactly the bizantium [Boncompagni (ed.)
1857: 94, 161, 203, 249, 274, 276]. Fibonacci’s choice of coins was thus meant to
correspond to real life. On its part, Ibn al-Yāsamı̄n’s problem makes it plausible that
the problem was present somewhere in the Western Mediterranean before 1190.

However, neither Planudes’s Calculus nor the writings from fourteenth century
Provence contain any trace of the sophisticated variants; this could suggest that Sicily
was their cradle but proves nothing. Barthélemy’s familiarity with two complete sets
of rules could seem to speak in favour of Provence as an important focus, not least
because Italian sources from the 140 years that separate him from Fibonacci tell us

52 Fibonacci is also known to have drawn verbatim on the scholarly translations into Latin from the twelfth
century even though he does not mention them (see, for instance, above, note 7), but no Latin source of this
kind appears to be relevant for the question.
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nothing about the sophisticated types. Nor do the Italian sources give any information,
however, about the way Cardano acquired his partial knowledge of the sophisticated
rules, which none the less he did acquire.53

All in all, the most certain result we get from the analysis is a general admonition
that known written sources may perhaps provide us with an adequate picture of what
went on in mathematics in the Christian cathedral school and incipient university
environment and of that level of Arabic and Byzantine mathematics that was linked
to madrasa learning, recognized scholarship and astronomy; but they do not thereby
provide us with anything like a complete canvas of what went on in mathematics. Even
if we limit our interest to advanced matters, much remains to be known—if it can be
known at all.

12 Who used pebbles?

The formulation of “a first difficult question” promises that there will be at least one
more question. The first question asked for the environment where the sophisticated
versions of our problem were formulated and solved; the second one is a return to the
question of the first origin of the simple version.

Planudes’s “theorem” corroborates the hypothesis that the invention was based on
pebble counters arranged in a square pattern. It constitutes no absolute proof, but let us
take the hypothesis for granted for a while. Should we then make the further inference
that we are confronted, if not necessarily with a Pythagorean discovery then at least
with a discovery belonging within the circuit of early Greek theoretical arithmetic?
This is the second question.

Prima facie, the answer need not be affirmative. Pebble arguments were certainly
used within that environment—but not exclusively, as we shall see. Evidence that the
general Greek public (and not only some closed Pythagorean circle) could be supposed
to be familiar with them in the early decades of the fifth century bce is offered by
Epicharmos Fragment B2 (ed. [Diels 1951: I, 196], a passage from a comedy fragment
dated c. 475 bce or earlier). It refers to the representation of an odd number (“or, for
that matter, an even number”) by a collection ofψη̄φoι, pebble counters, as something
trivially familiar.

Evidence that might seem to link the simple versions of our problem to Pythago-
reanism is an observation made by Iamblichos in his commentary to Nicomachos’s
Introduction54, and by various modern editors and commentators on Greek arithme-
tical writings55 - namely that 10×10 laid out as a square and counted “in horse-race”
as shown in Fig. 9 demonstrates that

10 × 10 = (1 + 2 + · · · + 9) + 10 + (9 + · · · + 2 + 1),

53 However, the faint echo of Chuquet and the Portuguese we find in Cardano’s story (“not knowing”, etc.)
may imply that this apparent objection is not really one.
54 Ed. [Pistelli 1975: 7525−27], cf. [Heath 1921: 113 f ].
55 The diagram described by Iamblichos is identical with what we find in J. Dupuis’s edition of Theon
of Smyrna’s Expositio [1892: 69 n. 14] and in Ivor Bulmer Thomas’s commentary to an excerpt from
Nicomachos [1939: I, 96 n. a].
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Fig. 9

whence

10 × 10 + 10 = 2S10,

Sn being the triangular number of order n. Rearranging and generalizing we get

Sn =
n∑

i=1

i = n2 +n

2

instead of the usual alternatives derived from the pairwise coupling as (1 + n) + (2 +
[n − 1]) + · · · ,

Sn = n · (n + 1)

2
= n

2
· (n + 1) = n · n + 1

2
.

That the sum of two consecutive triangular numbers is a square number can be found
in other authors close to the neo-Pythagorean and Platonizing current;56 it is unlikely
that anybody interested in figurate numbers would miss the point. The expression of
the sum S10 in a way that depends on this observation is more interesting. In order to
see that we shall leave the Greek cultural area for a moment.

In the cuneiform tablet AO 648457 (a mixed anthology text dated to the early second
century bce, thus to the Seleucid epoch), we find among other things summations of
series “from 1 to 10.” In obv. 1–2, 1+2+· · ·+29 is found, while obv. 3–4 determines
Q10 = 1 + 4 + · · · + 102. The latter calculation follows the formula

Q10 =
10∑

i=1

i2 = (1 · 1
3 + 10 · 2

3 ) · 55,

56 For example, Theon of Smyrna, Expositio I.xxviii, ed., trans. [Dupuis 1892: 68 f ].
57 Ed. [Neugebauer 1935: I, 96–99].
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which can be interpreted as a special case of the formula

Qn =
n∑

i=1

i2 = (1 · 1
3 + n · 2

3 ) · Sn,

Sn being still the triangular number of order n. The determination of the factor 1· 1
3 +n· 2

3
is described in precise detail; we may therefore be confident that the unexplained
number 55 was indeed found as S10 in an earlier problem of the original text from
which the anthology has borrowed its two summations.

P. British Museum 10520,58 a Demotic papyrus probably of early Roman date,
begins by stating that “1 is filled up twice to 10”, that is, by asking for the sums

S10 =
10∑

i=1

i and P10 =
10∑

i=1

Si

and answering from the correct formulae

Sn = n2 +n
2 and Pn = ( n+2

3 ) · ( n2 +n
2 ).

This does not overlap with the series dealt with in AO 6484, but the four sum-
mations are sufficiently close in style to be reckoned as members of a single cluster.
Moreover, the cuneiform formula for Qn follows from the Demotic formula for Pn

when combined with the observation that i2 = Ti + Ti−1.
The two texts just cited postdate the Epicharmos fragment by centuries. Their use

of a formula apparently derived from a pebble-based argument might in principle
represent a borrowing of results obtained by early Greek arithmeticians. However,
the total absence in the same texts of anything else which recalls Greek theoretical
mathematics makes such a borrowing unlikely. Independent adoption of the same
type of Greek material in Egypt and in Mesopotamia is also hard to imagine, given
the general absence of such borrowings from both the Seleucid cuneiform and the
Demotic mathematical traditions.

Another piece of evidence also speaks against a Greek invention. The determination
of

Q10 = 12 + 22 + · · · + 102 as (1 · 1
3 + 10 · 2

3 ) ·
10∑

i=1

i

turns up again in the pseudo-Nicomachean Theologumena arithmeticae (X.64, ed.
[de Falco 1975: 86], trans. [Waterfield 1988: 115]), in a quotation from the mid-third
century bishop and computist Anatolios of Alexandria (in a passage dealing with the
many wonderful properties of the number 55). Anatolios, however, gives the sum in
abbreviated form, as “sevenfold”

∑10
i=1 i , that is, in a form from which the correct

58 Ed., trans. [Parker 1972].
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Seleucid formula cannot be derived; this in itself does not prove that earlier Greek
arithmeticians did not know better; but it shows that the Seleucid–Demotic cluster
cannot derive from the form in which the formula was known to Anatolios. In addition,
the absence of the formula from any earlier Greek source derived from the theoretical
or Pythagorean tradition (including Theon of Smyrna and Nicomachos) suggests that
the learned Anatolios has picked it up elsewhere.

All in all, the only argument in favour of a Greek theoreticians’ discovery of these
summation formulae is that their shape points with high certainty toward a derivation
or proof based on pebbles, and only if this observation is combined with the axiom
that no mathematics not inspired by the Greeks can have been based on proofs. If
this axiom is given up, we may conclude the other way around: that (heuristic) proofs
based on pebbles were no Greek or Pythagorean invention but part of the heritage
which the Greeks adopted from the cultures of the Near East—most likely from that
practitioners’ melting pot of which the various shared themes and formulae of Seleucid
(or earlier Babylonian) and Demotic mathematics bear witness.59 If this is true, and
if the inheritance problem was inspired by pebble arithmetic, then the idea might,
according to the arguments given so far, just as well have arisen in the wider Near
Eastern area as in a Greek environment.

However, an argument ex silentio supports a Greek invention.60 Such arguments
are usually weak, but the present one is not without force. Triangular and square
numbers and the corresponding pyramid numbers Pn and Qn turn up together (and
always together with the sum

∑n
i=1 i3 = T 2

n ) in Indian sources and in al-Karajı̄’s
Fakhrı̄.61 Higher polygonal numbers, on the other hand, are absent from these sources
(of which the Indian ones, Āryabhat.a as well as Brahmagupta and Bhāskara II, are
more systematic than can be expected from the surviving random fragments of clay
tablets and papyri), although they normally go together with the triangular and square
numbers and their pyramids in Greek and Greek-derived writings. This difference
makes it natural to suppose that the higher polygonal numbers represent a Greek
theoretical elaboration, whereas triangular and square numbers and their pyramids are
part of a shared Near Eastern heritage which was to spread widely.

The Seleucid and Demotic mathematical sources also contain a number of quasi-
algebraic geometric problems; even these spread widely, at least to India (more pre-
cisely to Jaina mathematics as we known it through Mahāvīra), Arabic practical geo-
metry and Greco-Roman agrimensors.62 The total absence of anything similar to our
inheritance problem therefore speaks against its presence in the shared heritage of
Near Eastern calculators.

Admittedly, the problem is also absent from those Greek and Greek-derived sources
where it might have been expected to turn up—the arithmetical epigrams of Anthologia
Graeca XIV [ed. Paton 1979: V, 25–107] and Ananias of Shirak’s problem collection

59 See [Høyrup 2002].
60 Cf. also above, paragraph before the one around note 12, on the apparently .Atraditional.@ character of
Planudes’s problem and proof.
61 See [Clark 1930: 37] (Āryabhat.a), [Colebrooke 1817: 290–294] (Brahmagupta), [Colebrooke 1817:
51–57] (Bhāskara II), and [Woepcke 1853: 61] (Fakhrı̄).
62 A detailed exploration of this theme would lead much too far, but see [Høyrup 2001, 2002, 2004].
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[ed. Kokian 1919]. But absent from these—probably because they were too difficult—
are also a number of problem types which we know from their traces in Diophantos’s
Arithmetica I and elsewhere to have been known in the Greek world—the “purchase of
a horse” etc.63 Like these, the “unknown heritage” may simply have been too difficult
to be included. But the invention might also be medieval—the fact that Byzantine
mathematical scholarship was not at the level of ancient theoretical mathematics—
see, e.g., [Tihon 1988]—does not prove that mathematical intelligence was absent
from all strata of Byzantine society.

All answers to our second question remain hypothetical, but it appears that the
most plausible hypothesis is that the simple version of the problem type was invented
either in Greek Antiquity or in medieval Byzantium (and perhaps transmitted from
there to Sicily or Provence for further sophistication). However, any discovery of the
genuine problem type (not the box version) in a medieval Indian, Persian or Arabic
source would force us to evaluate probabilities anew. Even though Ibn al-Yāsamı̄n
did not know about such a thing it may after all be easier to imagine that one of the
mathematicians from al-Andalus who are known by name only could have derived
the intricate rules than to believe in the existence before 1200 of a mathematical
environment in the non-Arabic Mediterranean world which understood mathematics
better than Fibonacci.
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Ibn al–Hā’im’s texts, to Stéphane Lamassé for controlling the Chuquet manuscript and for giving me access
to his transcription of the Traicté de la praticque d’algorisme, and to Maria do Céu Silva for providing me
with copies of Gaspar Nicolás and Bento Fernandes.

References

Allard, André (ed., trans.), 1981. Maxime Planude, Le Grand calcul selon les Indiens. (Travaux de la Faculté
de Philosophie et Lettres de l’Université Catholique de Louvain, 27. Centre d’Histoire des Sciences et
des Techniques, sources et travaux, 1). Louvain-la-Neuve: [Faculté de Philosophie et Lettres].

Arrighi, Gino (ed.), 1964. Paolo Dell’Abaco,Trattato d’aritmetica. Pisa: Domus Galileana.
Arrighi, Gino (ed.), 1970. Piero della Francesca, Trattato d’abaco. Dal codice ashburnhamiano 280 (359∗–

291∗) della Biblioteca Medicea Laurenziana di Firenze. A cura e con introduzione di Gino Arrighi.
(Testimonianze di storia della scienza, 6). Pisa: Domus Galileana.

Arrighi, Gino (ed.), 1973. Libro d’abaco. Dal Codice 1754 (sec. XIV) della Biblioteca Statale di Lucca.
Lucca: Cassa di Risparmio di Lucca.

Arrighi, Gino (ed.), 1974. Pier Maria Calandri [actually Benedetto da Firenze, see Van Egmond 1980: 96],
Tractato d’abbacho. Dal codice Acq. e doni 154 (sec. XV) della Biblioteca Medicea Laurenziana di
Firenze. Pisa: Domus Galiaeana.

Arrighi, Gino (ed.), 1987. Paolo Gherardi, Opera mathematica: Libro di ragioni - Liber habaci. Codici
Magliabechiani Classe XI, nn. 87 e 88 (sec. XIV) della Biblioteca Nazionale di Firenze. Lucca: Pacini-
Fazzi.

63 The undressed “purchase of a horse” is Arithmetica I.24–25. Further evidence that such problems must
have been known is offered by the “bloom of Thymarides.” presented by Iamblichos in his commentary to
Nicomachos’s (Introduction [ed. Pistelli 1975: 62–67], cf. [Heath 1921: 94 f ]), and by a passage in Plato’s
Republic (333b-c, ed., trans. [Shorey 1930: I, 332 f ]), in which the purchase in common of a horse is said
to be an occasion in which one needs an expert.

123



652 J. Høyrup

Arrighi, Gino (ed.), 1989. “Maestro Umbro (sec. XIII), Livero de l’abbecho. (Cod. 2404 della Biblioteca
Riccardiana di Firenze)”. Bollettino della Deputazione di Storia Patria per l′Umbria 86, 5–140.

Bachet, Claude Gaspar, sieur de Meziriac, 1624. Problemes plaisans et delectables, que se font par les
nombres. Partie recuellis de divers autheurs, partie inventez de nouveau avec leur demonstration. Seconde
Edition, reveue, corrigée, et augmentée de plusieurs propositions, et de plusieurs problèmes. Lyon: Pierre
Rigaud & Associez.

Boncompagni, Baldassare (ed.), 1857. Scritti di Leonardo Pisano matematico del secolo decimoterzo. I. Il
Liber abbaci di Leonardo Pisano. Roma: Tipografia delle Scienze Matematiche e Fisiche.

Boncompagni, Baldassare (ed.), 1862. Scritti di Leonardo Pisano matematico del secolo decimoterzo. II.
Practica geometriae et Opusculi. Roma: Tipografia delle Scienze Matematiche e Fisiche.

Bourdon, Pierre Louis Marie, 1831. Élémens d’algèbre. 6Paris: Bachelier Père et Fils. 11817.
Busard, H. L. L., 1968. “L’algèbre au moyen âge: Le «Liber mensurationum» d’Abû Bekr”. Journal des

Savants, Avril-Juin 1968, 65–125.
Buteo, Joannes, 1560. Logistica, quae et arithmética vulgò dicitur in libros quinque digesta. Lyon: Gulielmus

Rovillius.
Calandri, Filippo, 1518. Ad nobilem & studiosum Iulianum Laurentii Medicem de Arimethrica opusculum.

Firenze: Bernardo Zucchecta. 11491.
Cardano, Girolamo, 1539. Practica arithmetice, et mensurandi singularis. Milano: Bernardini Calusco.
Cassinet, Jean, 2001. “Une arithmétique toscane en 1334 en Avignon dans la citè des papes et de leurs

banquiers florentins”, pp. 105–128 in Commerce et mathématiques du moyen âge à la renaissance,
autour de la Méditerranée. Actes du Colloque International du Centre International d’Histoire des
Sciences Occitanes (Beaumont de Lomagne, 13–16 mai 1999). Toulouse: Éditions du C.I.H.S.O.

Caunedo del Potro, Betsabé, & Ricardo Córdoba de la Llave (eds), 2000. El arte del alguarismo. Un libro
castellano de aritmética comercial y de ensayo de moneda del siglo XIV. (Ms. 46 de la Real Colegiato
de San Isidoro de León). Salamanca: Junta de Castilla y León, Consejeria de Educación y Cultura.

Chiarini, Giorgio, et al. (eds), 1972. [Pietro Paolo Muscharello], Algorismus. Trattato di aritmetica pratica
e mercantile del secolo XV. 2 vols. Verona: Banca Commerciale Italiana.
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